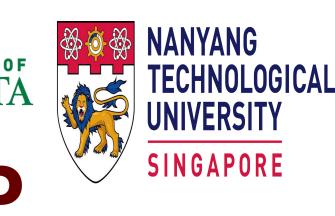


BenLLM-Eval: A Comprehensive Evaluation into the WALBERTA LINE COMPRESSIVE EVALUATION EVALUATION INTO THE WALBERTA LINE COMPRESSIVE EVALUATION EV Potentials and Pitfalls of Large Language Models on Bengali NLP



Mohsinul Kabir¹, Mohammad Saidul Islam², Md Tahmid Rahman Laskar², Mir Tafseer Nayeem³, M Saiful Bari⁴, Enamul Hoque² ¹Islamic University of Technology, ²York University, ³University of Alberta, ⁴Nanyang Technological University

Introduction

We present BenLLM-Eval, an evaluation of LLMs to benchmark performance in a modest-resourced Bengali We evaluate 3 LLMs, namely, GPT-3.5, language. LLaMA-2-13b-chat, and Claude-2 in zero-shot setting. We select seven diverse Bengali NLP tasks, namely, text summarization, question-answering, paraphrasing, natural language inference, transliteration, text classification, and sentiment analysis

Motivation and Contributions

• No prior work evaluated GPT-3.5, Claude-2 and Llama-2 on Bengali NLP tasks.

Methodology



Task and Datasets

- We evaluate the performance on 7 benchmark Bengali NLP tasks (see Table 1 for more details):
 - **Text Summarization:** 1 dataset (XL-Sum)
 - Question-Answering: 1 dataset (SQuAD-Bangla)
 - Paraphrasing: 1 dataset (IndicParaphrase)
 - Natural Language Inference: 1 dataset (BNLI)
 - **Transliteration:** 1 dataset (Dakshina)
 - Text Classification: 1 dataset (Soham News Article)
 - Sentiment Analysis: 2 datasets (IndicSentiment & SenNoB)

Results and Discussion

- We demonstrate our results in Table 1 and Table 2.
- While in most tasks GPT-3.5 and Claude-2 performed moderately, they performed on par with the SoTA models in the **sentiment analysis** task.
- However, in all of the tasks, the performance of the LLaMA-2-13b-chat model was significantly poor.
- In the transliteration task, GPT-3.5 was the best performer.

Task and Data Contamination Analysis

- We apply two contamination detection technique:
 - Task Example Extraction.
 - Membership Inference.
- Our findings reveal that only GPT-3.5 could generate examples related to tasks Analysis, Text classification, except Natural Language **Transliteration** Inference), while Claude-2 and LLaMA-2-13b-chat models failed to extract task examples for any tasks. Therefore, there is a possibility that such tasks were already included in the pre-training data of GPT-3.5
- Regarding the **BNLI dataset where no models** could extract any task examples, we find that the premises, hypotheses, and labels generated by all LLMs for Bengali were significantly inaccurate, providing evidence that contamination did not occur
- On the paraphrasing task, GPT-3.5 produced around 50 exact match instances, while Claude-2 produced 30 and LLaMA-2-13b-chat produced 15 exact matches of the generated outputs and test labels. However, we did not observe any exact match in **summarization**.
- In summary, contamination could be an issue the **GPT-3.5** model in **Sentiment** Analysis, Text Classification, and QA tasks, while the models, i.e., LLaMA-2-13b-chat, and Claude-2 were **affected** by task contamination in the Paraphrasing task
- However, in Natural Language Inference, we evidence of task did not see any contamination.

Conclusions and Future Work

- We present a comprehensive zero-shot evaluation of LLMs on 7 benchmark NLP tasks.
- Our results reveal that in some tasks, GPT-3.5 or Claude-2 perform on par (e.g., summarization) or even outperform (e.g., sentiment analysis) current SOTA models.
- In the future, we will expand our experiments by including more low to modest-resource languages, tasks, datasets, and settings

AND AN ITEM	XL-Sum (TS)			SQuAD_Bangla (QA)	IndicPara (PP)	BNLI (NLI)	SNAC (TC)	IndicSent (SA)	SentNoB (SA)		
Model	R-1 R-2		R-L	EM/F1	BLEU	Acc.	Acc.	Acc.	Р	R	F1
GPT-3.5	20.19	5.81	15.53	44.85/78.67	2.81	52.71	48.47	90.20	57.70	54.56	53.17
LLaMA-2-13b-chat	0.41	0.14	0.34	31.73/67.95	0.01	42.37	29.27	69.16	48.39	48.49	48.43
Claude-2	20.79	5.55	16.47	49.92/79.04	1.89	32.20	48.61	88.48	53.28	54.38	52.79
mT5 (Hasan et al., 2021)	28.32	11.43	24.23		4.45	7:	-		71	7	-
BanglaBERT (Bhattacharjee et al., 2022)	-	-	-	72.63/79.34		82.8	-	3 -2	=2	Ψ.	=
BanglishBERT (Bhattacharjee et al., 2022)	-	23	2	72.43/78.40	¥	80.95	-	62	23	2	2
XLM-R (Large) (Bhattacharjee et al., 2022)	100	58	5	73.15/79.06	-	82.4	-	a a	58	5	
XLM-R (Kakwani et al., 2020; Doddapaneni et al., 2022)	-	=	70			5	87.60	85.8	= 2	7	-
IndicBART (Kumar et al., 2022)	-	23	20		11.57	2		94	23	2	2
IndicBERT (Kakwani et al., 2020; Doddapaneni et al., 2022)	<u>-</u>	28	2			23	78.45	89.3	20	2:	2
mBERT (Kakwani et al., 2020; Doddapaneni et al., 2022)		70	5		-	5	80.23	72.0	49.58	56.43	52.79
Bi-LSTM + Attn. (w/ FastText) (Islam et al., 2021)	-	-	*		-	₩.	- -	7 -2	52.24	63.09	57.15
Bi-LSTM + Attn. (w/ Rand init) (Islam et al., 2021)	<u>-</u>	23	2		2	20	2	2	56.16	64.97	60.25

Table 1: Performance Comparison between zero-shot LLMs and fine-tuned SOTA models on Text Summarization (TS), Question-Answering (QA), Paraphrasing (PP), Natural Language Inference (NLI), Text Classification (TC), and Sentiment Analysis (SA).

Task	Pair 6-gram		LSTM		Transformer		Noisy Channel	GPT-3.5		LLaMA-2-13b		Claude 2	
	CER(1)	WER (↓)	CER(1)	WER (↓)	CER (1)	WER (↓)	WER (1)	CER(1)	WER (1)	CER(1)	WER (↓)	CER(1)	WER (↓)
Lexicon	14.2	54.0	13.9	54.7	13.2	50.6	5.	18.1	60.6	39.85	80.72	23.16	68.07
Sentence		39.7	-	5		37.6	25.8	7	29.9	(70)	66.54	-	38.10