
Introduction to NLTK
(A Tool Kit for Natural Language Processing)

Mir Tafseer Nayeem
University of Lethbridge

Alberta, Canada
mir.nayeem@uleth.ca

Natural Language Toolkit (NLTK)

• A collection of Python programs, modules, data set and tutorial to
support research and development in Natural Language Processing
(NLP).

• NLTK is
• Free and Open source

• Easy to use

• Modular

• Well documented

• Simple and extensible

• http://www.nltk.org/

http://www.nltk.org/

Installing NLTK

• If you do not have Python yet, go to Python.org and download the
Python.

• The easiest method to install the NLTK module is with pip.

• pip install nltk

https://www.python.org/

Download NLTK data

• import nltk

• nltk.download()

Some definitions

• Corpus - Body of text. Corpora is the plural of Corpus.
• Example: A collection of news documents.

• Lexicon - Words and their meanings.
• Example: English dictionary.

• Token - Each "entity" that is a part of whatever was split up based on
rules.
• For examples, each word is a token when a sentence is "tokenized" into

words. Each sentence can also be a token, if you tokenized the sentences out
of a paragraph.

NLTK Modules & Functionality

Accessing Corpora

• NLTK provides over 50 corpora and lexical resources

>> from nltk.corpus import Gutenberg

>> print(gutenberg.fileids())

>>> ['austen-emma.txt', 'austen-persuasion.txt', 8 'austen-sense.txt', 'bible-kjv.txt',
............]

Accessing Corpora (contd..)

• Accessing Corpora: Raw text
>>> emmaText = gutenberg.raw("austen-emma.txt")

>>> emmaText[:200]

• Accessing Corpora: Words
>>> emmaWords = gutenberg.words("austen-emma.txt")

>>> print(emmaWords[:30])

• Accessing Corpora: Sentences
>>> senseSents = gutenberg.sents("austen-sense.txt")

>>> print(senseSents[:5])

Frequency Distribution

• Records how often each item occurs in a list of words.

• Frequency distribution over words.

• Basically a dictionary with some extra functionality.
>>> import nltk
>>> from nltk.corpus import brown
>>> news_words = brown.words(categories = "news")
>>> fdist = nltk.FreqDist(news_words)
>>> print("shoe:", fdist["shoe"]) Output: ('shoe:', 1)
>>> print("the: ", fdist["the"]) Output: ('the: ', 5580)
>>> fdist.tabulate(10)
the , . of and to a in for The

5580 5188 4030 2849 2146 2116 1993 1893 943 806

Plotting Frequency Distribution

create a plot of the 10 most frequent words

>>> fdist.plot(10)

Tokenization

• Tokenization is the process of breaking a stream of text up into words,
phrases, symbols, or other meaningful elements called tokens.

>>> from nltk.tokenize import word_tokenize, wordpunct_tokenize, sent_tokenize

>>> s = '''Good muffins cost $3.88\nin New York. Please buy me two of them.\n\nThanks.''‘

• Word Punctuation Tokenization

>>> wordpunct_tokenize(s)

['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']

• Sentence Tokenization

>>> sent_tokenize(s)

['Good muffins cost $3.88\nin New York.', 'Please buy me\ntwo of them.', 'Thanks.']

• Word Tokenization

>>> [word_tokenize(t) for t in sent_tokenize(s)]

[['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.'], ['Please', 'buy', 'me', 'two', 'of','them', '.'], ['Thanks', '.']]

Regular Expression Tokenizer

• First you need to decide how you want to tokenize a piece of text then you
construct your regular expression. The choices are:

• Match on the tokens

• Match on the separators, or gaps

>>> from nltk.tokenize import RegexpTokenizer

>>> tokenizer = RegexpTokenizer("[\w']+")

>>> tokenizer.tokenize("Natural Language Processing is very interesting")

['Natural', 'Language', 'Processing', 'is', 'very', 'interesting']

Filtering stopwords

• Stopwords are common words that generally do not contribute to the
meaning of a sentence.

• Most search engines will filter stopwords out of search queries and
documents in order to save space in their index.

• Stopwords can be found in the directory
• nltk_data/corpora/stopwords/

>>> from nltk.corpus import stopwords

>>> english_stops = set(stopwords.words('english'))

>>> words = ['The', ‘natural', 'language', 'processing', 'is', 'very', 'interesting']

>>> [word for word in words if word.lower() not in english_stops]

[‘natural', 'language', 'processing', 'interesting']

Edit Distance

• The edit distance is the number of character changes necessary to
transform the given word into the suggested word.

>>> from nltk.metrics import edit_distance

>>> edit_distance("Birthday", "Bday")

4

>>> edit_distance("Addition", "substitution")

7

Normalizing Text

• The goal of both stemming and lemmatization is to "normalize" words
to their common base form, which is useful for many text-processing
applications.

• Stemming = heuristically removing the affixes of a word, to get its
stem (root).

• Lemmatization = Lemmatization process involves first determining
the part of speech of a word, and applying different normalization
rules for each part of speech.

Consider:
• I was taking a ride in the car.

• I was riding in the car.

• Imagine every word in the English language, every possible tense and affix you
can put on a word.

• Having individual dictionary entries per version would be highly redundant and
inefficient.

Stemming
• One of the most popular stemming algorithms is the Porter stemmer,

which has been around since 1979.
• Several other stemming algorithms provided by NLTK are Lancaster

Stemmer and Snowball Stemmer.
from nltk.stem import PorterStemmer
ps = PorterStemmer()
example_words = ["python","pythoner","pythoning","pythoned","pythonly"]
for w in example_words:

print(ps.stem(w))

Output:
python
python
python
python
pythonli

Lemmatization

• Lemmatize takes a part of speech parameter, "pos." If not supplied,
the default is "noun".

>>> from nltk.stem import WordNetLemmatizer

>>> lemmatizer = WordNetLemmatizer()

>>> lemmatizer.lemmatize('cooking')

'cooking'

>>> lemmatizer.lemmatize('cooking', pos='v')

'cook'

Comparison between stemming and lemmatizing

• The major difference between these is, as you saw earlier, stemming
can often create non-existent words, whereas lemmas are actual
words, you can just look up in an English dictionary.

>>> stemmer.stem('believes')

'believ'

>>> lemmatizer.lemmatize('believes')

'belief'

Part-of-speech Tagging

• Part-of-speech Tagging is the process of marking up a word in a text
(corpus) as corresponding to a particular part of speech.

>>> from nltk.tokenize import word_tokenize

>>> from nltk.tag import pos_tag

>>> words = word_tokenize('And now for something completely different')

>>> pos_tag(words)

[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different','JJ')]

• https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Penn Bank Part-of-Speech Tags

Named-entity Recognition

• Named-entity recognition is a subtask of information extraction that
seeks to locate and classify elements in text into pre-defined
categories such as the names of persons, organizations, locations,
expressions of times, quantities, monetary values, percentages, etc.

>>> from nltk import pos_tag, ne_chunk

>>> from nltk.tokenize import wordpunct_tokenize

>>> sent = 'Jim bought 300 shares of Acme Corp. in 2006.'

>>> ne_chunk(pos_tag(wordpunct_tokenize(sent)))

Tree('S', [Tree('PERSON', [('Jim', 'NNP')]), ('bought', 'VBD'), ('300', 'CD'), ('shares', 'NNS'),('of', 'IN'),
Tree('ORGANIZATION', [('Acme', 'NNP'), ('Corp', 'NNP')]), ('.', '.'), ('in', 'IN'),('2006', 'CD'), ('.', '.')])

NE Type and Examples
ORGANIZATION - Georgia-Pacific Corp., WHO
PERSON - Eddy Bonte, President Obama
LOCATION - Murray River, Mount Everest
DATE - June, 2008-06-29
TIME - two fifty a m, 1:30 p.m.
MONEY - 175 million Canadian Dollars, GBP 10.40
PERCENT - twenty pct, 18.75 %
FACILITY - Washington Monument, Stonehenge
GPE - South East Asia, Midlothian

>>> ne_chunk(pos_tag(wordpunct_tokenize(sent))).draw()

WordNet

• WordNet is a lexical database for the English language. In other
words, it's a dictionary designed specifically for natural language
processing, which was created by Princeton, and is part of the NLTK
corpus.

• You can use WordNet alongside the NLTK module to find the
meanings of words, synonyms, antonyms, similarity and more. Let's
cover some examples.

Some Examples

>>> from nltk.corpus import wordnet
>>> syns = wordnet.synsets("program")
>>> print syns
[Synset('plan.n.01'), Synset('program.n.02'), Synset('broadcast.n.02'),
Synset('platform.n.02'), Synset('program.n.05'), Synset('course_of_study.n.01'),
Synset('program.n.07'), Synset('program.n.08'), Synset('program.v.01'),
Synset('program.v.02')]
>>> print(syns[0].name())
plan.n.01
>>> print syns[0].pos()
N
>>> print(syns[0].definition())
a series of steps to be carried out or goals to be accomplished
>>> print(syns[0].examples())
[u'they drew up a six-step plan', u'they discussed plans for a new bond issue']

WordNet synset similarity
• Synsets are organized in a hypernym tree. Two synsets are more similar, the

closer they are in the tree. According to Wu and Palmer method for
semantic related-ness.

>>> w1 = wordnet.synset('ship.n.01')

>>> w2 = wordnet.synset('boat.n.01')

>>> print(w1.wup_similarity(w2))

0.9090909090909091

>>> w1 = wordnet.synset('ship.n.01')

>>> w2 = wordnet.synset('car.n.01')

>>> print(w1.wup_similarity(w2))

0.6956521739130435

>>> w1 = wordnet.synset('ship.n.01')

>>> w2 = wordnet.synset('cat.n.01')

>>> print(w1.wup_similarity(w2))

0.38095238095238093

Bag of Words model
• All texts need to be converted to numbers before starts processing by

the machine.

• Consider these two short texts.
1. Julie loves me more than Linda loves me

2. Jane likes me more than Julie loves me

• We want to know how similar these texts are, purely in terms of word
counts (and ignoring word order). We begin by making a list of the
words from both texts:

[me Jane Julie Linda likes loves more than]

• Now we count the number of
times each of these words
appears in each text.

S1 S2

me 2 2

Jane 0 1

Julie 1 1

Linda 1 0

likes 0 1

loves 2 1

more 1 1

than 1 1

• We are interested only in those
two vertical vectors of counts.
• a: [2, 0, 1, 1, 0, 2, 1, 1]
• b: [2, 1, 1, 0, 1, 1, 1, 1]

• The cosine of the angle
between them defines the
similarity between the texts.
[Cosine Similarity]

• The cosine of the angle
between them is about 0.822.

http://stackoverflow.com/questions/15173225/how-to-calculate-cosine-similarity-given-2-sentence-strings-python

Classifying with NLTK

• Supervised Classification Algos in NLTK
• Naive Bayes

• Maximum Entropy / Logistic Regression

• Decision Tree

• SVM (coming soon) [Can also be used through scikit-learn library]

• Problem: Gender identification from name.

• Relevant feature: Last Letter

Building Features

• Create a feature set (a dictionary) that maps from features‘ names to
their values.

def gender_features(word):

return {'last_letter': word[-1]}

• Import names, shuffle them
from nltk.corpus import names

import random

names = ([(name, 'male') for name in names.words('male.txt')] + [(name, 'female') for name in
names.words('female.txt')])

random.shuffle(names)

Train and Test

• Divide list of features into training set and test set
featuresets = [(gender_features(n), g) for (n,g) in names]
train_set, test_set = featuresets[500:], featuresets[:500]

• Use training set to train a naive Bayes classifier
classifier = nltk.NaiveBayesClassifier.train(train_set)

• Test the classier on unseen data
classifier.classify(gender_features('Neo'))
>>> 'male'
classifier.classify(gender_features('Trinity'))

>>> 'female'
print nltk.classify.accuracy(classifier, test_set)
>>> 0.744

Most Informative Features

• Examine the classier to see which feature is most effective at
distinguishing between classes.

>>> classifier.show_most_informative_features(5)

Most Informative Features

last_letter = 'a' female : male = 35.7 : 1.0

last_letter = 'k' male : female = 31.7 : 1.0

last_letter = 'f' male : female = 16.6 : 1.0

last_letter = 'p' male : female = 11.9 : 1.0

last_letter = 'v' male : female = 10.5 : 1.0

Feeling lonely?

• Eliza is there to talk to you all day!
>>> from nltk.chat import eliza

>>> eliza.eliza_chat()

……starts the chatbot

Thanks! ☺
Any Questions?

