

SurveyGen: Quality-Aware Scientific Survey Generation with Large Language Models

Tong Bao¹, Mir Tafseer Nayeem², Davood Rafiei², Chengzhi Zhang¹

1.Nanjing University of Science and Technology2.University of Alberta

Why survey generation?

- The rapid growth of publications causes information overload, making it hard for us to keep up with through daily reading
- Survey articles help researchers summarize related work and highlight future directions in the field
- Writing a survey is a complex task (e.g., summarizing 100+ relevant papers)
- LLMs open the door for this task due to their powerful understanding and generation capabilities.

Related work

- 1. Semantic similarity retrieval from database (abstracts VS. survey topic)
- 2. Ranking paper based on similarity/relevance to get the final candidates
- 3. Generate the survey outline first, and then drafting the survey content
- 4. Human and LLM-as-judge for survey evaluation
 - [1] Autosurvey: Large language models can automatically write surveys. *NeurIPS* 2025.
 - [2] SurveyX: Academic survey automation via large language models. arXiv 2025.
 - [3] Are Ilms good literature review writers? evaluating the literature review writing ability of large language models. arXiv 2025.

Gaps

1. Semantic similarity-based retrieval suffers from recall issues

e.g., the <u>Word2Vec</u> may get a low semantic similarity score with the topic <u>Deep learning</u>, but it is cited by many deep-learning related papers and should be take consideration.

2. Semantic similarity ranking fails to capture the quality or impact of the retrieved papers.

e.g., the abstract of a best paper award winner may receive a similar score as a regular paper

 Missing benchmark of human-written surveys hinders comparison with gold standards.

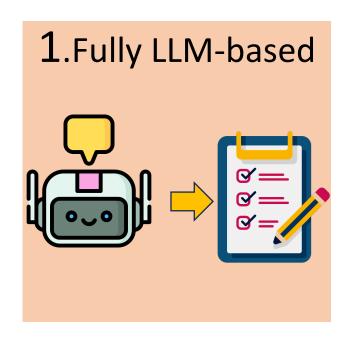
e.g., What are the differences between LLM-generated surveys and human-written surveys?

Our contributions

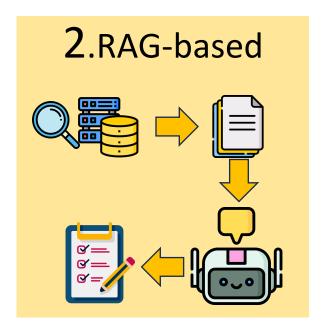
- 1. Introduce SurveyGen, a large-scale dataset comprising over 4,200 human-written surveys from multi domains.
- 2. Propose QUAL-SG, a novel framework that extends Naive-RAG by adding academic quality evaluation into the survey generation pipeline.
- 3. QUAL-SG significantly improves citation quality, content relevance, and structural consistency in survey generation

SurveyGen: Task Design

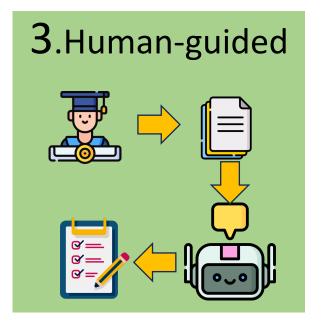
Humans may engage LLMs at different stages during survey generation, we design *three* tasks for comprehensive evaluation:



Input: topic



Input: topic+ RAG



Input: topic+ outline+reference

SurveyGen: Data Collection

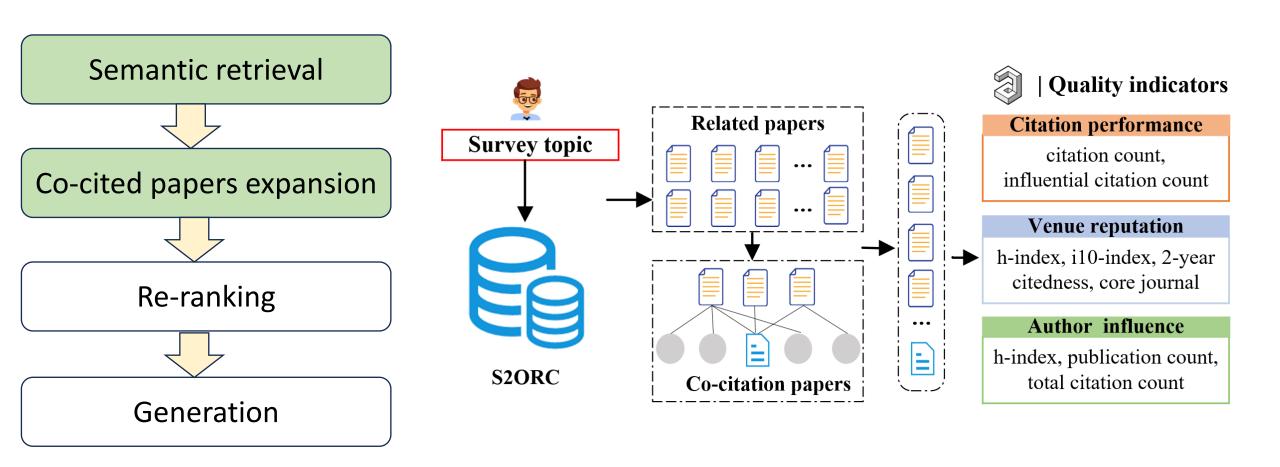
- 1. Find articles that titles contain "a survey", "a review", "survey of", etc., from Semantic scholar Open Research Corpus(S2ORC) from 2010-2024
- 2. LLMs for survey-type paper classification based on the title and abstract
- 3. Full-text accessible, citation count >30, top-level section headers >3
- 4. Parse the section divisions and map each reference to the corresponding sections based on its in-text citation locations

SurveyGen: Data Supplement

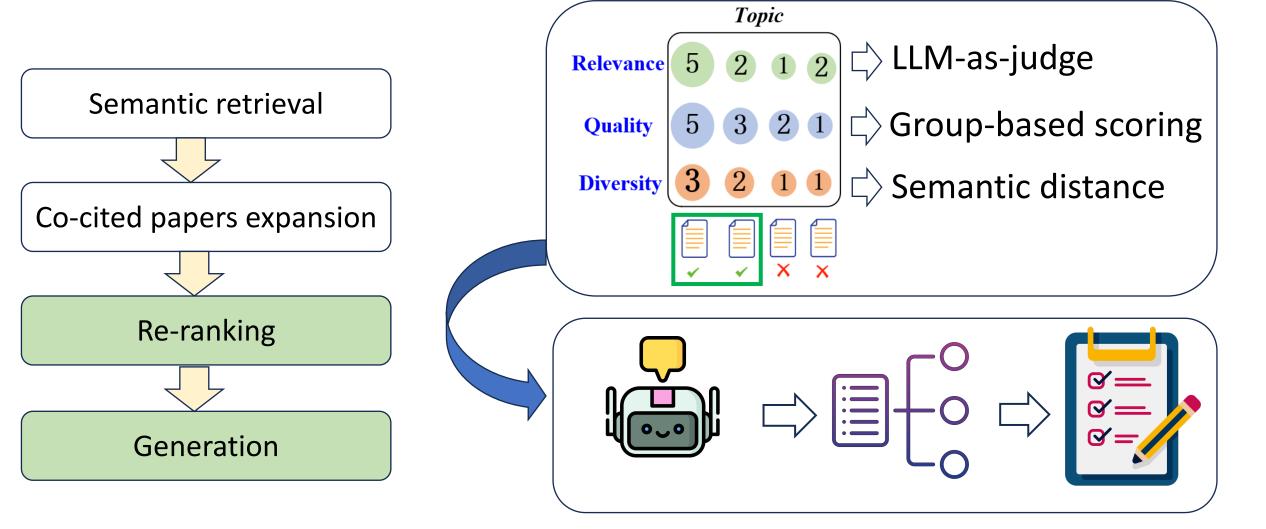
- 1. Basic metadata: Supplement metadata (e.g., abstract, DOI, research fields) for all involved papers from S2ORC
- 2. Quality-related data: Retrieve citation performance, author influence, and venue reputation from OpenAlex database via DOIs
- 3. Metadata for second-level references: Enriched the metadata for a total of 5.06M references cited by the papers referenced in all surveys

4,200+ surveys, 115,000+ sections, 240,000+ references

QUAL-SG: Quality-aware Survey Generation



QUAL-SG: Quality-aware Survey Generation



Evaluation: Automatic Evaluation

1. Citation quality

- ✓ Acc.(hallucinated)
- ✓ P, R, F1 (human)

2.Content quality

- ✓ Semantic similarity.
- Rouge-L
- ✓ Key Point Recall

3.Structural consistency

- ✓ Section overlap (%)
- ✓ Overall relevance

Sections

- Introduction
- > Overview
- > Resources of LLMs
- > Pre-training
- > Adaptation of LLMs
- > Capacity and Evaluation
- Conclusion and Future

References

Contents

A Survey of Large Language Models

Sections

- Introduction
- > Overview > Resources of LLMs
- > Pre-training
- > Adaptation of LLMs
- > Utilization
- > Capacity and Evaluation
- > Applications
- Conclusion and Future

Contents

A Survey of Large Language Models

References

Evaluation: Human Evaluation

Criteria

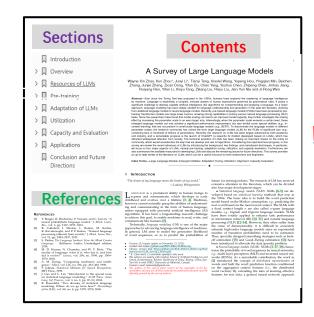
Topic Relevance: whether the survey maintains a clear focus on the assigned topic?

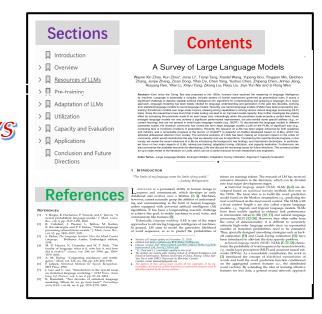
Information Courage: whether the survey includes key papers, major developments, and diverse research approaches relevant to the topic?

Critical Analysis: whether the survey compares methods or findings, identifies limitations or open challenges, and offers insight rather than descriptive summaries?

Overall Rating: whether the survey is well-written, logically structured, and academically appropriate, and would be considered the better survey in comparison?

Which one is better, comparable, or worse?





Results: Task1>Fully LLM-based

- LLMs is not reliable at reference generation (Acc.35.84%)
- Good similarity but lower KPR
- Closed-source LLMs show better structural consistency
- Open-soured deliver comparable results in content generation

Model	Citation Quality			Content Quality			Structural Consistency		
Model	Acc. ↑	P↑	R↑	F1 ↑	Sim. ↑	R-L↑	KPR ↑	Rel _{LLM}	Overlap (%)
■ Open-source LLMs									
GLM-4-Flash	9.27	9.03	3.26	4.79	81.27	<u>15.04</u>	41.71	2.44	10.62
LLaMA-3.1-70B	15.43	11.48	2.74	4.42	82.43	15.36	<u>44.36</u>	<u>2.62</u>	13.48
DeepSeek-V3	33.63	10.85	4.09	<u>5.94</u>	82.05	14.18	43.53	2.57	11.03
⚠ Closed-source LLMs									
GPT-4.1	21.07	12.31	3.72	5.71	79.51	13.48	39.21	2.39	10.95
Gemini-2.0-Flash	22.20	8.97	3.59	5.13	80.20	14.65	42.67	2.50	12.39
Claude-3.7-Sonnet	35.84	<u>11.79</u>	5.78	7.76	81.32	13.77	46.59	2.65	14.89

Table 2: Performance comparison of different LLMs on Task 1. "Acc" indicates whether the generated references are factually accurate and correspond to real papers. "Sim", "R-L", and "KPR" represent "Semantic similarity" "Rouge-L", and "Key Point Recall", respectively. "Rel_{LLM}" represents structural consistency in LLM evaluations. The best results are marked **bold** and the second-best are <u>underlined</u>.

Results: Task2 > RAG-based

- QUAL-SG outperforms baselines
- Directly and significantly improves citation quality
- Also achieves notable gains in content quality and structural consistency

Model	Citation Quality			Content Quality			Structural Consistency	
Model	P↑	R↑	F1 ↑	Sim. ↑	R-L↑	KPR ↑	Rel _{LLM}	Overlap (%)
Fully-LLMGen	11.79	5.78	7.76	81.32	13.77	46.59	2.65	14.89
Naive-RAG	5.18	6.94	5.93	82.37	12.90	42.17	2.43	12.22
QUAL-SG (Ours)	15.87 [†]	17.71 [†]	16.73 [†]	83.10 [†]	15.17 [†]	50.25^{\dagger}	2.81 [†]	24.76^{\dagger}

Table 3: Performance of different models on Task 2. For Fully-LLMGen (Tang et al., 2025), we directly report the results from Task 1. In the Naive-RAG setting (Wu et al., 2025), retrieval is based on the semantic similarity between the survey topic and candidate abstracts. Claude-3.7-Sonnet is used as the backbone for all methods. The best results are marked **bold**. \dagger denotes significant differences to baselines (p-value < 0.001).

Results: Task3>Human-guided

- Compared to Task 1 and Task 2, human-guided method achieve best content quality
- Closed-source LLMs are a costeffective option at content generation
- Even with perfect references and an outline, there remains a gap compared to humans

Model	Sim. ↑	R-L↑	KPR ↑					
Open-source LLMs								
GLM-4-Flash	82.04	16.29	46.88					
LLaMA-3.1-70B	84.39	17.16	<u>52.13</u>					
DeepSeek-V3	83.97	15.25	49.50					
△ Closed-source LLMs								
GPT-4.1	82.59	13.82	50.02					
Gemini-2.0-Flash	83.74	15.62	51.76					
Claude-3.7-Sonnet	84.22	15.43	54.67					

Table 4: Content quality evaluation results of different LLMs on Task 3. The best results are marked **bold** and the second-best are <u>underlined</u>.

Results: Reference Selections Analysis

- QUAL-SG show the best alignment with human-written survey
- Fully-LLMGen show a pronounced long-tail distribution
- Poor performance of Naive-RAG highlights the limitation of purely semantic retrieval

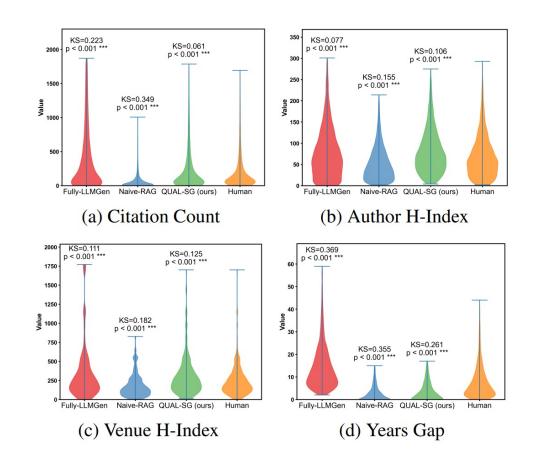


Figure 3: Comparison of reference selection distributions across models: "KS" denotes the Kolmogorov–Smirnov statistic against the human baseline (lower values indicate closer alignment), "p" is the associated p-value, and "Years Gap" denotes the difference in publication years between reference and the survey. For Fully-LLMGen, the survey year is set to 2025. Claude-3.7-Sonnet is used as the backbone LLM for all methods.

Results: Compare with Other Ranking Models

 QUAL-SG outperforms UPR and RankGPT

 RankGPT (Prompt-based ranking) performs poorly in distinguishing paper quality

Model	P% ↑	R%↑	F1% ↑
UPR (Sachan et al., 2022)	10.28	10.63	10.45
RankGPT (Sun et al., 2023)	<u>14.55</u>	<u>15.09</u>	14.81
QUAL-SG (ours)	15.87	17.71	16.73

Table 5: Citation quality comparison of different ranking models. For RankGPT, we instruct it via prompt to rank based on the same three criteria (§2.4) used in our QUAL-SG. The best results are marked **bold** and the second-best are <u>underlined</u>.

Results: Human Evaluation

 Survey generated from Humanguided setting rated more acceptable by human evaluators

 In general, the generated surveys currently fail to provide sufficient information coverage and critical analysis

Task	Comparison	Topic Relevance	Information Coverage	Critical Analysis	Overall Rating
Task 1	Comparable LLM-Generated > Human-written	33.3% 20.0%	33.3% 26.7%	26.7% 26.7%	20.0% 13.3%
Task 2	Comparable LLM-Generated > Human-written	33.3% 33.3%	46.7% 20.0%	40.0% 20.0%	26.7% 13.3%
Task 3	Comparable LLM-Generated > Human-written	40.0% 26.7%	53.3% 20.0%	46.7% 20.0%	26.7% 20.0%

Table 6: Human evaluation results across tasks. Each task includes five surveys from the Computer Science domain, all generated using Claude-3.7-Sonnet. For Task 2, the surveys were generated from the QUAL-SG pipeline.

Results: Ablation Study

 The performance of QUAL-SG declines across all ablation settings.

 Academic ranking is the most Important components, then co-cited expansion, relevance, and content diversity

Ablation Setting	P↑	R↑	F 1 ↑
QUAL-SG	15.87	17.71	16.73
w/o co-cited expansion	10.07 (\10.80)	11.52 (\(\psi_6.19\))	10.75 (\$\frac{1}{5.98})
w/o topical relevance	11.54 (\.4.33)	13.15 (\4.56)	12.29 (\.4.44)
w/o academic impact	8.76 (17.11)	9.28 (\18.43)	9.01 (\psi.72)
w/o content diversity	<u>13.16</u> (\dagger)2.71)	<u>14.34</u> (\dagger)3.37)	<u>13.72</u> (\dagger3.01)

Table 7: Ablation study of QUAL-SG in the literature retrieval stage.

Future works

 Analyzing human citation behavior—such as citation intent, frequency, and location in the textual context for better paper selection

Using full-body text of a paper may provide more useful information

 Improving survey quality via human-in-the-loop structure control, factual verification, and advanced long-document modeling to improve the quality

Thank you!

