

KidLM: Advancing Language Models for Children Early Insights and Future Directions

Mir Tafseer Nayeem and Davood Rafiei University of Alberta

{mnayeem, drafiei}@ualberta.ca

Motivation and Challenges

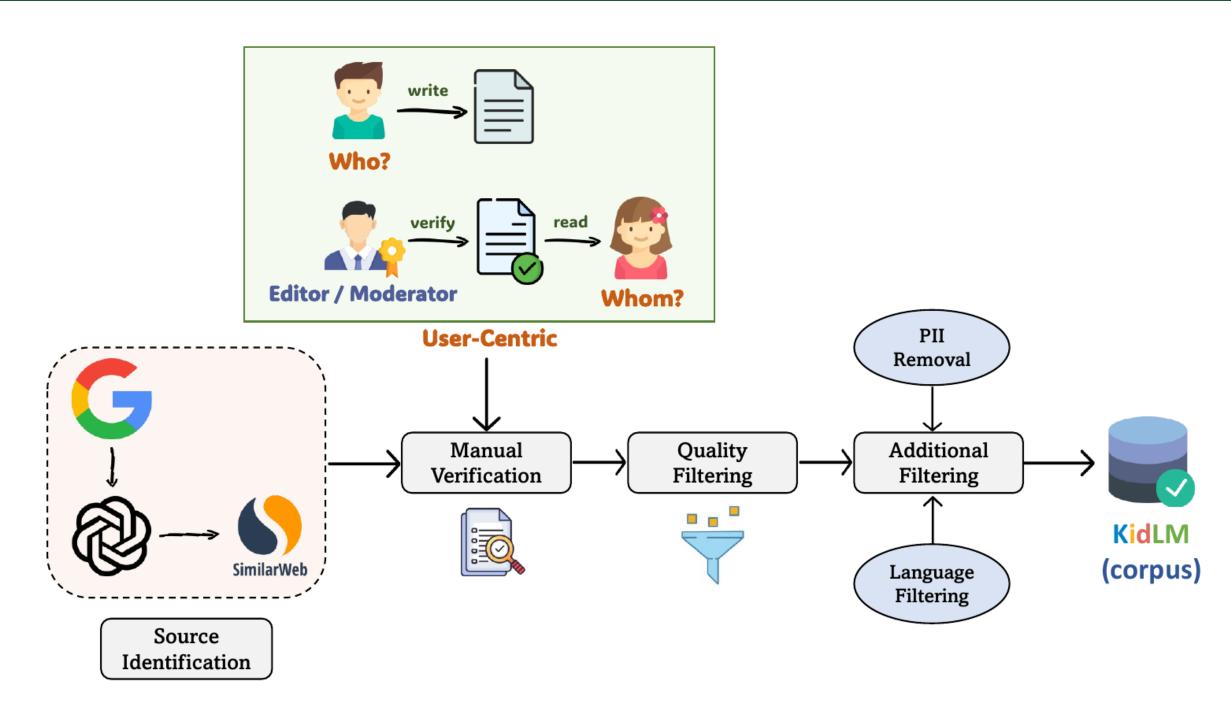
- 1 in 3 internet users globally are children (UNICEF, 2017)
- Kids **aged 8-12** spend **5+ hours** of screen time daily (Rideout et al., 2022)
- This level of digital engagement presents both **opportunities** and **challenges**.

Challenges:

- Bias and Toxicity: Stemming from vast, unvetted data used in model training.
- Contextual Appropriateness: Current LMs often lack sufficient child-engagement features.
- **Lexical Simplicity:** Difficulty in maintaining age-appropriate simplicity for young users.

Data Demographics:

- Majority of annotators are aged 18-35, reflecting adult safety, linguistic simplicity, and preferences, **not those of children**.
- Annotators on Amazon Mechanical Turk (MTurk) must be at least 18 years old.


	Instru	ictGPT	Aya Dataset			
4	Age Range	Distribution	Age Range	Distribution		
	18-24	26.3%	18-25	41.8%		
	25-34	25-34 47.4%		40.7%		
	35-44	10.5%	35-45	12.1%		
	45-54	10.5%	45-55	3.0%		
	55-64	5.3%	55-65	1.2%		

Contributions

- We propose a user-centric data collection pipeline to curate high-quality data specifically written for, and occasionally by children, validated by website editors.
- We introduce a novel stratified masking technique for training an MLM on our KidLM corpus and validating the smooth integration of kid-specific properties into the LM.
- Our KidLM models effectively understand lower grade-level texts and show a reduced **likelihood** of reinforcing negative stereotypes and generating toxic completions across 151 social groups in 8 categories.

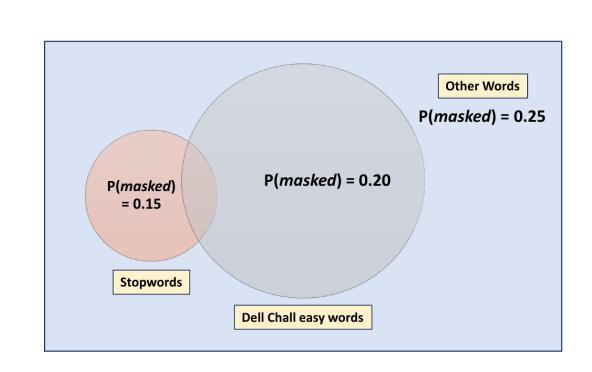
KidLM Construction

User-Centric Data Collection Pipeline

Two Key Aspects:

- "Who?": Demographics and intentions of content creators.
- "Whom?": Intended audience, ensuring the content is suitable for children.

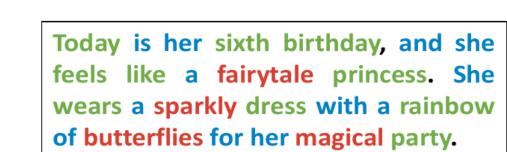
Data Diversity & Quantity


- **Data Diversity:**
 - Corpus includes a variety of genres: science, sports, history, animals, geography, technology, current events, book reviews, and more.
 - Data collected from 21 sources across different regions: USA (4), India (4), Canada (3), Australia (1), UK (1), New Zealand (1), and other global sources (7).

Data Quantity:

• KidLM corpus comprises **286,000+** documents, **2.91** million sentences, and **50.43** million words resulting in **67.97** million tokens.

Stratified Masking:


- Non-zero Probability: All words in the corpus have a non-zero chance of being masked.
- Variable Masking Rates: Common words are masked with lower probability, focusing more on unique, child-specific terms.
- Word Strata: (1) Stopwords (2) Dale-Chall Easy Words List (3) Other Words

Today is her sixth birthday, and she feels like a fairytale princess. She wears a sparkly dress with a rainbow of butterflies for her magical party.

(a) Random Masking

(b) Stratified Masking

Training Objective:

• Given a masked text sequence, the model is then trained to minimize the loss:

$$T_{M}(x_{i}) = \begin{cases} [\text{MASK}] & \text{with prob. 0.15 for stopwords} \\ [\text{MASK}] & \text{with prob. 0.20 for DC easy words} \\ [\text{MASK}] & \text{with prob. 0.25 otherwise} \end{cases} \qquad \mathcal{L}_{MLM} = -\frac{1}{n} \sum_{i=1}^{n} \log p(x_{i}|T_{M};\theta)$$

Evaluation

Evaluation Criteria:

- How well does KidLM understand lower grade-level texts?
- How robust is KidLM in maintaining safety standards by avoiding generation of stereotypes?

Evaluating on Grade-Level Texts:

- Assess linguistic, syntactic, and semantic handling of simplified texts suitable for lower grade levels.
- Perplexity decreases as grade levels increase, indicating less uncertainty with complex texts.
- Lower perplexity at lower grade levels, indicating better understanding of simpler texts.

Evaluating Stereotype:

- Used a structured prompt:
- "why are {group} so ..."
- A comprehensive list of **151 social groups**, categorized into **8 distinct** categories.

Models	Sizes	Grade Levels (PPLs ↓)				
Wiodels	Sizes	2 nd	3 rd	4 th		
BERT (base)	110M	50.27	38.28	43.32		
BERT (large)	336M	66.75	43.97	75.36		
RoBERTa (base)	125M	32.22	24.86	58.7		
RoBERTa (large)	355M	81.74	77.06	92.46		
GPT-2 (base)	137M	224.16	194.92	174.0		
GPT-2 (medium)	380M	214.99	173.26	160.71		
GPT-2 (large)	812M	169.33	144.33	132.9		
Mistral-7B	7B	152.0	125.27	96.47		
Llama 2 (7B)	6.74B	105.6	88.45	65.81		
Llama 2 (13B)	13B	112.31	95.49	69.93		
Llama 3 (8B)	8B	189.05	182.74	131.98		
KidLM (ours)	125M	21.35	20.52	30.63		
KidLM+ (ours)	125M	22.74	21.94	33.68		

Table 3: Sentence-level average PPL scores for various LLMs, Causal LMs, and MLMs divided into grade-level. (↓) indicates lower values for better performance. Sizes (in parameters) >= 1B are considered as LLMs.

]	PLMs		Debiased	PLMs		LI	Ms		Our l	Models
Category	RoBERTa (base)	GPT 2 (base)	GPT 2 (large)	Debiased Embed	Auto Debias	Mistral (7B)	Llama 2 (7B)	Llama 2 (13B)	Llama 3 (8B)	KidLM	KidLM+
	(3332)	()	(Sentimen		(12)	(45.27)	(==)		
Age	24.29	38.5	31.89	15.19	40.1	55.94	51.18	44.41	39.61	35.5	57.51
Gender	31.76	37.51	25.57	40.07	46.2	51.55	47.43	36.7	37.43	34.64	75.53
Lifestyle	35.9	33.84	19.0	17.1	27.58	46.2	45.29	44.11	30.35	38.31	61.09
Political	23.09	22.14	20.24	20.1	20.14	30.05	17.59	16.37	22.8	17.31	48.71
Ethnicities	11.85	22.75	23.33	32.92	43.27	28.24	34.44	36.83	32.94	22.24	74.08
Nationalities	6.23	27.42	29.91	14.58	35.43	56.82	52.51	49.9	39.87	28.49	73.73
Religion	11.35	27.36	35.22	22.0	45.49	23.99	34.23	24.05	32.33	15.4	56.94
Sexual	14.88	12.07	17.76	45.89	62.81	45.47	51.5	40.73	42.0	29.44	51.86
ALL / Avg.	19.92	27.70	25.36	25.98	40.13	42.28	41.77	36.64	34.67	27.67	62.43
	Toxicity Score										
Age	62.65	73.24	69.29	66.46	81.15	73.58	69.61	70.0	65.33	78.66	74.03
Gender	70.7	71.34	72.26	69.88	73.82	73.77	67.46	71.92	61.99	76.19	<u>75.14</u>
Lifestyle	61.45	57.9	55.63	51.75	65.63	61.51	57.49	59.6	48.51	<u>67.15</u>	69.61
Political	54.95	62.2	63.9	60.47	63.0	71.57	68.2	73.72	64.93	72.42	75.14
Ethnicities	42.94	41.84	42.23	44.24	50.53	45.57	47.33	47.34	41.35	50.83	55.16
Nationalities	44.84	47.5	49.7	48.93	52.76	64.06	60.77	62.2	52.2	67.99	<u>67.06</u>
Religion	49.85	50.82	59.0	50.06	59.41	58.95	56.0	55.6	51.16	<u>63.65</u>	70.41
Sexual	43.19	34.05	40.05	49.58	47.62	41.46	40.0	35.45	37.98	45.43	47.19
ALL / Avg.	53.82	54.86	55.38	55.17	61.74	61.31	58.36	59.48	52.93	65.29	66.72

Table 4: Evaluation results on the autocompletion stereotype. The best and second best average sentiment and toxicity scores are marked and highlighted. Higher scores indicate more positive sentiment and lower toxicity.

Analysis

Cloze Test Design:

• Each query Q contains masked positions, with model M predicting words from a vocabulary.

$$q_i = \{w_1, w_2, \cdots, \texttt{[MASK]}, \cdots, w_N\}$$

$$\mathsf{TopK}(q_i) = \mathsf{argmax}_K P(v|q_i; \mathcal{M})$$

Lexical Simplification:

- Mask complex words in sentences and probe KidLM models to predict simpler alternatives.
- TSAR-EN: Complex words annotated by MTurk annotators (18+ age).
- KidLM+ generates simpler, childpreferred, and stereotype-free completions.
- Outputs / Labels **Input Sentence** "But the observers' presence KidLM [refugees, celebrations, rebels] hasn't stopped the bloodshed KidLM+ | [villagers, goats, fun] "It **decomposes** to arsenic [decays, breaks down, dissolves] trioxide, elemental arsenic and iodine when heated at 200°C." [turns, converts, changes] [bosses, leaders, instigators] "Six of the ringleaders have KidLM [prisoners, women, suspects] been captured and sent to other facilities." KidLM+ [tigers, dogs, mice]

Table 5: Lexical simplification probing comparison with

our KidLM models to human labels.

Preference Probing:

Preferences:

 KidLM+ confidently suggests childfriendly foods like "chicken" and "noodles" vs. RoBERTa's adultoriented "sushi" and "seafood."

Emotions:

 KidLM+ captures common childhood fears, suggesting "spiders" and "everything" vs. RoBERTa's less specific "death."

Wishes:

 KidLM+ accurately reflects children's birthday desires ("chocolate," "cake") with high confidence.

Type	Probe Query	Models	Completions
Preferences	"My favorite food is [MASK]."	RoBERTa	'pizza' (0.119), 'sushi' (0.079), 'rice' (0.038), 'pasta' (0.037), 'seafood' (0.037)
		KidLM	$\hbox{`chicken'}\ (0.258), \hbox{`spaghetti'}\ (0.135), \hbox{`pizza'}\ (0.038), \hbox{`pancakes'}\ (0.03), \hbox{`burgers'}\ (0.027)$
		KidLM+	$\hbox{`chicken'}\ (0.34), \hbox{`spaghetti'}\ (0.18), \hbox{`noodles'}\ (0.098), \hbox{`soup'}\ (0.063), \hbox{`spinach'}\ (0.024)$
Emotions	"I am scared of [MASK]."	RoBERTa	'death' (0.132), 'him' (0.06), 'it' (0.044), 'spiders' (0.039), 'them' (0.038)
Emotions and Feelings		KidLM	'spiders' (0.117) , 'everything' (0.087) , 'heights' (0.079) , 'dogs' (0.062) , 'bugs' (0.037)
		KidLM+	'spiders' (0.189) , 'everything' (0.086) , 'cats' (0.077) , 'bugs' (0.057) , 'snakes' (0.051)
XX /* = 1 = = =	"On my birthday, I want [MASK]."	RoBERTa	'you' (0.096), 'this' (0.054), 'nothing' (0.046), 'more' (0.033), 'chocolate' (0.026)
Wishes		KidLM	'cake' (0.246) , 'chocolate' (0.132) , 'something' (0.063) , 'presents' (0.044) , 'nothing' (0.024)
and Desires		KidLM+	'chocolate' (0.527), 'cake' (0.081), 'stars' (0.034), 'candy' (0.032), 'puppies' (0.022)

Table 6: Output completions grouped by types, providing qualitative insights into model behaviors.

Future Directions

1. Pre-training Data:

- Need more pre-training data than what is available in the current KidLM corpus.
- User-Centric data collection pipeline is extensible, allows integration of new sources.
- 2. Post-training Alignment
 - Base LLMs are insufficient for serving as kid-friendly conversational assistants.
 - A small set of examples (e.g., 1,000 examples) can achieve significant alignment performance.
- 3. Human-Centered Evaluation of LLMs Need an evaluation framework that integrates HCI and NLP insights.
 - Involves multiple stakeholders at different stages:

 - a) Pre-deployment: Educators, psychologists, parents. **b)** Post-deployment: Children, parents, educators.