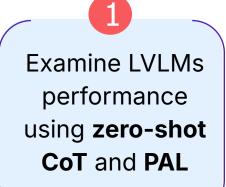
Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning?

Mohammed Saidul Islam⁴, Raian Rahman⁴, Ahmed Masry⁴, Md Tahmid Rahman Laskar⁴, Mir Tafseer Nayeem⁴, Enamul Hoque⁴ York University, Canada, ⁴Islamic University of Technology, Bangladesh, ⁴University of Alberta, Canada

* Equal contribution

Introduction

- We present the **first and most comprehensive** evaluation of LVLMs on benchmark tasks focused on chart understanding and reasoning
- We evaluate several popular LVLMs,
 - **Closed source:** GPT-4V, Gemini, Claude-3
 - **Open source:** Phi-3-vision-128k-instruct
- We evaluate the models on five downstream tasks across seven benchmark datasets
- Our findings reveal,
 - o LVLMs demonstrate capabilities in generating fluent texts covering high-level data insights
 - However, they encounter common problems like hallucinations, factual errors, and data bias


Motivation

- Recent advances in LVLMs,
 - show promise in multimodal tasks,
 - but their abilities in chart comprehension remain under-explored
- Existing SoTA models typically,
 - report quantitative performance on ChartQA
 - present no detailed analysis of the capabilities and limitations
- So we pose the following **research question**:

Are LVLMs up to the challenge of chart comprehension and reasoning?

Contributions

Evaluate LVLMs in generating open-ended responses

Investigate hallucinations, factual errors, and biases

3

Examine LVLMs capabilities in chart data extraction

4

Analyze LVLMs in generating low-level and high level semantic content

5

Evaluation

(1) Models Evaluated

- GPT-4V
- Gemini-1.0-pro-vision
- Claude-3-haiku
- Phi-3-vision-128k-instruc t

(2) Evaluation Method

Task-specific General Evaluation

• **Tasks:** Chart Question Answering, Chart Summarization, Open-ended ChartQA, Chart Fact Checking, Chart-to-Table

Criteria-based Focused Evaluation

- Hallucination Analysis
- Analysis of Semantic Levels

	ChartQA (zero-shot CoT) Cl			Chart	ChartQA (zero-shot PAL)		OpenCQA	Chart Summarization			Chart-Fact-checking			Chart-to-Table		
	(Accuracy)		(Accuracy)		(BLEU)	(BLEU)			(F1 - score)			(RNSS) (RMS)				
Models	aug.	human	avg.	aug.	human	avg.		Pew	Statista	Vistext(L1)	Vistext(L2/L3)	ChartFC	ChartC(T1)	ChartC(T2)	ChartQA	ChartQA
Human baseline	-	-	-	-	-	-	-	-	-	-	140 141	-	-	S-	- 1	95.7
Gemini (2023)	74.96	70.72	72.84	46.08	46.08	46.08	6.84	35.9	25.8	27.4	15.7	65.8	71.42	68.05	85.86	54.84
GPT-4V (2023)	72.64	66.32	69.48	75.44	65.68	70.56	3.31	28.5	18.2	18.2	11.3	69.6	73.50	71.30	81.51	61.97
Claude-3-haiku (2024)	47.12	42.00	44.56	76.88	63.44	70.16	4.58	36.9	25.8	25.2	14.2	61.4	71.70	73.14	95.83	50.65
Phi-3-vision-128k-inst (2024)	-	-	81.40	-	-	-	3.95	28.6	19.9	20.6	10.6	66.8	70.78	70.89	78.31	6.61
MatCha (2022)	90.20*	38.20*	64.20*					12.20	39.40				64.00	60.90	85.21	83.40
UniChart (2023)	88.56*	43.92*	66.24*	2	-	-	14.88	12.48	38.21	121	-	-		12	94.01	91.10
T5 (2022; 2022b)	7 <u>-</u> 1	-	59.80 *	2	-	-	57.93	-	2	10	-	-	<u></u>	12	-	- 2
VL-T5 (2022; 2022b; 2023)	12	-	59.12 *	-	-	-	59.80	: _ :	2	12	32.90	-	-	-	÷	<u>-</u>
OCR-T5 (2022c; 2023)	12	-	- 2	121	-	-	-	35.39	2	121	10.49	-		12	÷	- 2
ResNet + BERT (2023a)	11 <u>-</u> 1	-	-	-	-	-	-	-	2	12	-	62.70	<u></u>	12	÷	- 2
ChartLLaMA (2023)	12	-	69.66*	-	-	-	-	40.71	2	121	14.23	-	- <u>-</u>	12	-	2
ChartAssistant (2024)	12	-	79.90*	2	-	-	15.50	41.00	2	123	15.20	-	02	12	÷	92.00
Pix2struct (2022)	11 <u>-</u> 1	-	56.05*	2	-	-	12.70	38.00	2	120	10.30	-	-	12	÷	- 2
ChartInstruct (2024a)	12	-	72.00*	-	-	-	16.71	43.53	2	12	13.83	2	72.65	12	÷	
ChartGemma (2024b)	-	-	80.16*	-	-	-	-	-	-	2	20	70.33	72.17	12	-	- 2

	ChartQA (zero-shot CoT)						
	(Accuracy)						
Models	aug.	human	avg.				
Human baseline	-	-	-				
Gemini (2023)	74.96	70.72	72.84				
GPT-4V (2023)	72.64	66.32	69.48				
Claude-3-haiku (2024)	47.12	42.00	44.56				
Phi-3-vision-128k-inst (2024)	-	-	81.40				
MatCha (2022)	90.20*	38.20*	64.20*				
UniChart (2023)	88.56*	43.92*	66.24*				
T5 (2022; 2022b)	12	-	59.80 *				
VL-T5 (2022; 2022b; 2023)	-	-	59.12 *				
OCR-T5 (2022c; 2023)	-	-	-				
ResNet + BERT (2023a)	12	-	-				
ChartLLaMA (2023)	12	-	69.66*				
ChartAssistant (2024)	-	-	79.90*				
Pix2struct (2022)	12	-	56.05*				
ChartInstruct (2024a)	-	-	72.00*				
ChartGemma (2024b)	-	-	80.16*				

	ChartQA (zero-shot PAL)					
	(Accuracy)	(Accuracy)				
Models	aug. human a	avg.				
Human baseline		-				
Gemini (2023)	46.08 46.08 4	6.08				
GPT-4V (2023)	75.44 65.68 7	0.56				
Claude-3-haiku (2024)	76.88 63.44 7	0.16				
Phi-3-vision-128k-inst (2024		-				
MatCha (2022)						
UniChart (2023)		-				
T5 (2022; 2022b)		-				
VL-T5 (2022; 2022b; 2023)		-				
OCR-T5 (2022c; 2023)		-				
ResNet + BERT (2023a)		-				
ChartLLaMA (2023)		-				
ChartAssistant (2024)		-				
Pix2struct (2022)		-				
ChartInstruct (2024a)		-				
ChartGemma (2024b)		-				

	OpenCQA
-	(BLEU)
Models	
Human baseline	-
Gemini (2023)	6.84
GPT-4V (2023)	3.31
Claude-3-haiku (2024)	4.58
Phi-3-vision-128k-inst (2024)	3.95
MatCha (2022)	
UniChart (2023)	14.88
T5 (2022; 2022b)	57.93
VL-T5 (2022; 2022b; 2023)	59.80
OCR-T5 (2022c; 2023)	-
ResNet + BERT (2023a)	20
ChartLLaMA (2023)	-
ChartAssistant (2024)	15.50
Pix2struct (2022)	12.70
ChartInstruct (2024a)	16.71
ChartGemma (2024b)	-

	Chart Summarization						
	(BLEU)						
Models	Pew Statista Vistext(L1) Vistext(L2/L						
Human baseline							
Gemini (2023)	35.9 25.8 27.4 15.7						
GPT-4V (2023)	28.5 18.2 18.2 11.3						
Claude-3-haiku (2024)	36.9 25.8 25.2 14.2						
Phi-3-vision-128k-inst (2024)	28.6 19.9 20.6 10.6						
MatCha (2022)	12.20 39.40						
UniChart (2023)	12.48 38.21						
T5 (2022; 2022b)							
VL-T5 (2022; 2022b; 2023)	32.90						
OCR-T5 (2022c; 2023)	35.39 10.49						
ResNet + BERT (2023a)							
ChartLLaMA (2023)	40.71 14.23						
ChartAssistant (2024)	41.00 15.20						
Pix2struct (2022)	38.00 10.30						
ChartInstruct (2024a)	43.53 13.83						
ChartGemma (2024b)							

	Chart-	Fact-checking
	(F)	l – score)
odels	ChartFC Cha	artC(T1) ChartC(T2
ıman baseline	-	
emini (2023)		71.42 68.05
T-4V (2023)	69.6	73.50 71.30
aude-3-haiku (2024)	61.4	71.70 73.14
i-3-vision-128k-inst (2024	66.8	70.78 70.89
tCha (2022)		64.00 60.90
Chart (2023)	-	с с
(2022; 2022b)	-	
-T5 (2022; 2022b; 2023)	-	
R-T5 (2022c; 2023)	-	
sNet + BERT (2023a)	62.70	
artLLaMA (2023)	-	
artAssistant (2024)	-	
2struct (2022)	-	
nartInstruct (2024a)	-	72.65 -
hartGemma (2024b)	70.33	72.17 -

	Chart-	to-Table
	(RNSS)) (<i>RMS</i>)
Models	ChartQA	ChartQA
Human baseline		95.7
Gemini (2023)	85.86	54.84
GPT-4V (2023)	81.51	61.97
Claude-3-haiku (2024)	95.83	50.65
Phi-3-vision-128k-inst (2024)	78.31	6.61
	85.21	83.40
JniChart (2023)	94.01	91.10
⁵ (2022; 2022b)	-	- 2
/L-T5 (2022; 2022b; 2023)	-	-
DCR-T5 (2022c; 2023)	-	
ResNet + BERT (2023a)	-	- 2
ChartLLaMA (2023)	-	-
ChartAssistant (2024)	-	92.00
2 Yix2struct (2022)	-	- 2
ChartInstruct (2024a)	-	
ChartGemma (2024b)	-	<u> </u>

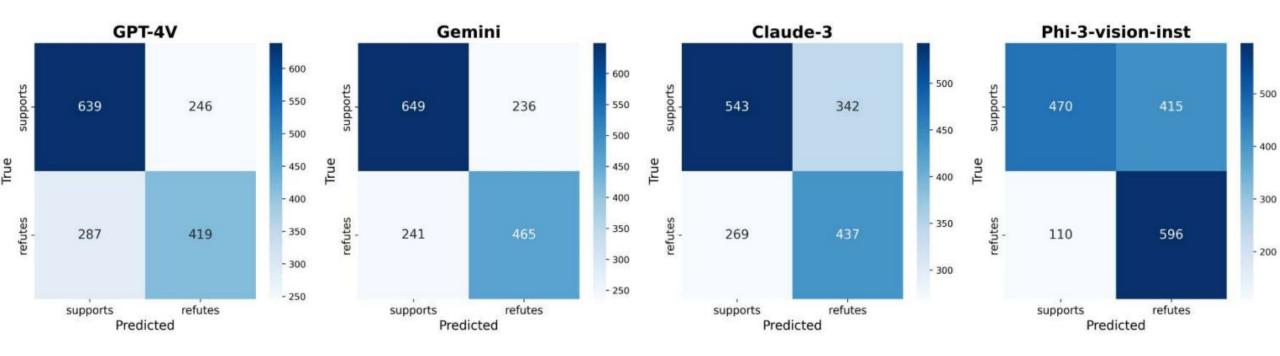


Figure 3: Confusion matrices for different LVLMs on the ChartFC dataset.

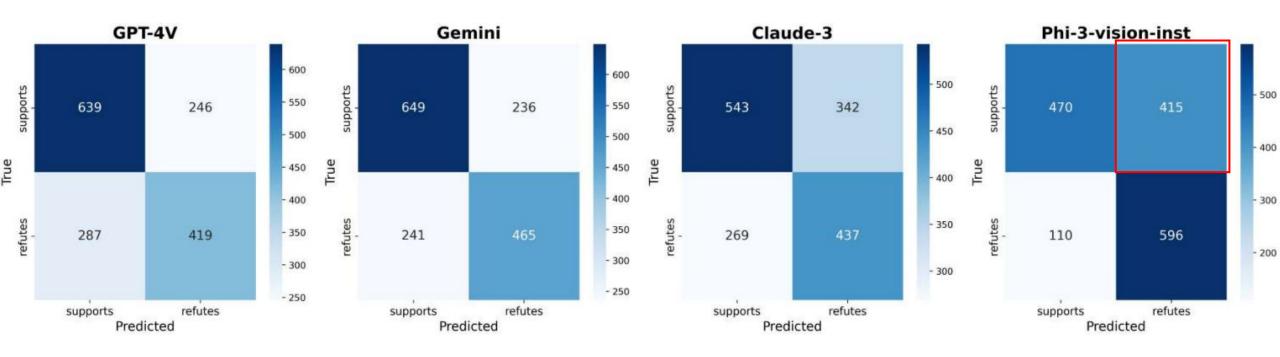


Figure 3: Confusion matrices for different LVLMs on the ChartFC dataset.

- Task-specific General Evaluation
 - Gemini → better CoT reasoner
 - GPT-4V and Claude-3 → **better at reasoning with code**
 - When the data values are not annotated in the charts, the performance of different models on ChartQA drops drastically

Hallucination Analysis

			Average Error Count (Per Summary)						
Error Type	Example		Pe	w	Statista				
		Gemini	GPT-4V	Claude 3 Haiku	Gemini	GPT-4V	Claude 3 Haiku		
Entity	Alberta is the top producer, with 126,082,558 billion cubic meters of natural gas.	0.47	0.51	1.39	0.66	0.88	1.85		
Relation	The population density was lowest in 2018 and highest in 1960	0.16	0.17	0.17	0.17	0.21	0.12		
Subjective	The chart shows that the number of cases is significantly higher in urban areas	0.02	0.02	0.01	0.02	0.02	0.00		
	compared to rural areas.								
Contradictory	There is a clear upward trend in the number of deaths caused by influenza and	0.19	0.12	0.15	0.29	0.14	0.19		
	pneumonia over time. This trend is likely due to improvements in public health								
	measures, such as vaccination and sanitation.								
Unverifiable	Overall, the increase of percentage of people who have completed high school, has a	0.03	0.03	0.03	0.05	0.04	0.03		
	positive impact on the United States.								
Invented	The unemployment rate increased sharply from 3.3% in November 2019 to 15.7% in	0.02	0.07	0.03	0.03	0.05	0.04		
	April 2020, the highest level since the Great Recession.								
Total		0.89	0.92	1.76	1.26	1.35	2.23		

Table 3: Color-coded table example of hallucinations detected in chart summaries by FAVA. Key: Red = entity hallucination; Orange = relation hallucination; Green = contradictory hallucination; Gold = invented hallucination. Subjective and unverifiable hallucinations exist at the sentence level and are not highlighted. Average error counts per type are included.

Hallucination Analysis (FAVA method – 6 hallucination types)

Error Distribution

The *"entity"* category showed the **most errors**, followed by *"relation"* and *"contradictory"* categories, aligning with findings from other NLP research

Model Comparison

Claude-3 had the **highest error** count, while Gemini and GPT-4V showed better performance

Actionable Insight

Frequent hallucinations in *entities* and *relations* are often **fixable** with **minor edits**, underscoring the need for improved detection methods.

Analysis of Semantic Levels

	Cove	rage	Accuracy (%)		
Semantic Level	GPT-4V	Gemini	GPT-4V	Gemini	
L1: Visual encodings	1.69	1.25	70.0	57.5	
L2: Statistical and relational	0.56	0.87	80.5	62.0	
L3: Perceptual and cognitive	0.70	0.41	58.9	48.2	
L4: contextual and domain-specific	0	0.03	15.5	16.0	

Table 4: The performance of GPT-4V and Gemini in answering questions (Accuracy) and generating sentences across various semantic levels. 'Coverage' indicates average sentences per semantic level in summaries.

Analysis of Semantic Levels (Four-level semantic framework)

Model Performance in Text generation

GPT-4V produces **longer summaries** with **detailed visual information (Level 1 & 3)**, while **Gemini** generates **concise summaries** with **statistical** and **domain-specific information (Level 2 & 4)**. However, all models **lack** sufficient contextual insights (Level 4).

Semantic Understanding in Question-Answering

GPT-4V generally **outperforms Gemini** across different **semantic levels**, though both **struggle** with **complex line charts**, and **Gemini excels** in providing contextual information beyond the chart data.

Conclusion

To summarize,

- This is the first comprehensive analysis of LVLMs such as GPT-4V, Gemini, Claude, and Phi-3 in real-world chart interpretation
- We evaluate the models across various tasks, including:
 - ChartQA, Chart Summarization, Open ended ChartQA, Fact Checking with Charts, Chart-to-Table, etc.
- We investigate common issues such as hallucinations, factual errors, and bias in LVLMs using an error taxonomy for hallucinations
- Detailed analysis of text generation tasks, assessing models' ability to describe:
 - High-level trends and outliers
 - Low-level details like chart colors, axis labels etc

Thank You

