

Are Large Vision Language Models up to the Challenge of **Chart Comprehension and Reasoning?**

UNIVERSITY

Mohammed Saidul Islam^{*}, Raian Rahman^{*}, Ahmed Masry^{*}*, Md Tahmid Rahman Laskar^{*}*, Mir Tafseer Nayeem^{*}*, Enamul Hoque^{*} *York University, Canada, *Islamic University of Technology, Bangladesh, *University of Alberta, Canada

* Equal contribution

Motivation

- Recent advances in LVLMs, show promise in multimodal tasks, • but their abilities in chart comprehension remain under-explored
- Existing SoTA models typically, report quantitative performance on ChartQA • present no detailed analysis of the capabilities and limitations
- So we pose the following research question:

Are LVLMs up to the challenge of chart comprehension and reasoning?

Results (*Criteria-based Focused Evaluation***)**

Hallucination Analysis (FAVA method – 6 hallucination types)

Error Distribution

The *"entity"* category showed the most errors, followed by "relation" and "contradictory" categories, aligning with findings from other NLP research

Model Comparison

Claude-3 had the **highest error** count, while Gemini and GPT-4V showed better performance

Contributions

Examine LVLMs performance using zero-shot CoT and PAL	2 Evaluate LVLMs in generating open- ended responses	J Investigate hallucinations, factual errors, and biases	4 Examine LVLMs capabilities in chart data extraction	5 Analyze LVLMs in generating low- level and high level semantic content	fi d Error Type	rec ixa lete
Methodolog 1. Select Benchmark datasets	k 2. P	repare on Prompt	3. Generate Jodels' Responses	4. Evaluation	Entity Relation Subjective Contradictor Unverifiable Invented	pneu mea
Chart QA (Chart- to-Text) (Vis Te	ChartQA Chart Summarization				Total Table 3: hallucina Subjectiv per type	Colc ation; ve and

A

Actionable Insight

equent hallucinations in *entities* and *relations* are often able with minor edits, underscoring the need for improved tection methods.

			Average Error Count (Per Summary)							
Error Type	Example		Per	w		Statista				
		Gemini	GPT-4V	Claude 3 Haiku	Gemini	GPT-4V	Claude 3 Haiku			
Entity	Alberta is the top producer, with 126,082,558 billion cubic meters of natural gas.	0.47	0.51	0.51 1.39		0.88	1.85			
Relation	The population density was lowest in 2018 and highest in 1960	0.16	0.17	0.17	0.17	0.21	0.12			
Subjective	The chart shows that the number of cases is significantly higher in urban areas compared to rural areas.	0.02	0.02	0.01	0.02	0.02	0.00			
Contradictory	There is a clear upward trend in the number of deaths caused by influenza and pneumonia over time. This trend is likely due to improvements in public health measures, such as vaccination and sanitation.	0.19	0.12	0.15	0.29	0.14	0.19			
Unverifiable	Overall, the increase of percentage of people who have completed high school, has a positive impact on the United States.	0.03	0.03	0.03	0.05	0.04	0.03			
Invented	The unemployment rate increased sharply from 3.3% in November 2019 to 15.7% in April 2020, the highest level since the Great Recession.	0.02	0.07	0.03	0.03	0.05	0.04			
Total		0.89	0.92	1.76	1.26	1.35	2.23			

olor-coded table example of hallucinations detected in chart summaries by FAVA. Key: Red = entity on; Orange = relation hallucination; Green = contradictory hallucination; Gold = invented hallucination. and unverifiable hallucinations exist at the sentence level and are not highlighted. Average error counts included.

Analysis of Semantic Levels (Four-level semantic framework)

Model Performance in Text generation

GPT-4V produces longer summaries with detailed visual information (Level 1 & 3), while Gemini generates concise summaries with statistical and domain-specific information

Task and Datasets

Chart-to-Table

Open CQA

Chart Check

Chart FC

 We evaluat 	the performance on 5 benchmark Chart Reasoning and	x
Compreher	on tasks:	

FRUMFIL

PROMPT

(PROMPT)

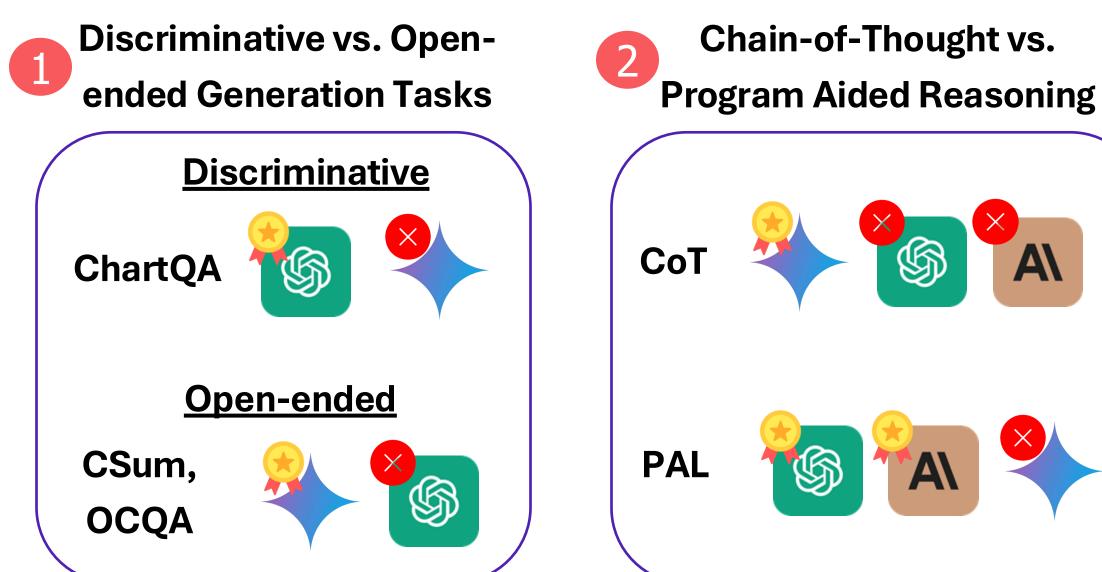
Chart Fact

Checking

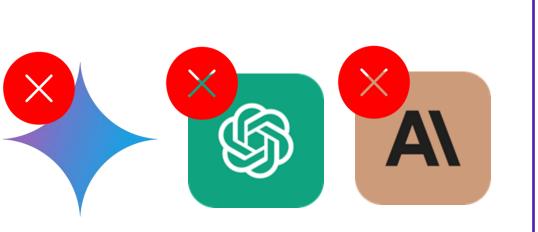
Chart-to-Table

Chart Question Answering: 1 dataset (ChartQA)	Chart Summarization: 2 datasets (Chart-to-	Open-ended Chart QA: 1 dataset (OpenCQA)	Fact Checking with Charts: 2 datasets (ChartFC,	Chart-to-Table: 1 dataset (ChartQA)	Sem
	Text, VisText)		ChartCheck)		Se Cl

Results (*lask-specific General Evaluation*)



No Data value annotation 3 (Chart-to-Table)



(Level 2 & 4). However, all models lack sufficient contextual insights (Level 4).

nantic Understanding in Question-Answering

PT-4V generally outperforms Gemini across different emantic levels, though both struggle with complex line harts, and Gemini excels in providing contextual information beyond the chart data.

	Cove	rage	Accuracy (%)		
Semantic Level	GPT-4V	Gemini	GPT-4V	Gemini	
L1: Visual encodings	1.69	1.25	70.0	57.5	
L2: Statistical and relational	0.56	0.87	80.5	62.0	
L3: Perceptual and cognitive	0.70	0.41	58.9	48.2	
L4: contextual and domain-specific	0	0.03	15.5	16.0	

Figure: The performance of GPT-4V and Gemini in answering questions (Accuracy) and generating sentences across various semantic levels. 'Coverage' indicates average sentences per semantic level in summaries.

	ChartQ	A (zero-s	shot CoT)	Chart	QA (zero-	shot PAL)	OpenCQA	Chart Summarization				CI	nart-Fact-che	Chart-to-Table		
Models	(Accuracy)		(Accuracy)		(BLEU)	(BLEU)			(F1 - score)			(RNSS)	(RMS)			
	aug.	human	avg.	aug.	human	avg.		Pew	Statista	Vistext(L1)	Vistext(L2/L3)	ChartFC	ChartC(T1)	ChartC(T2)	ChartQA ChartQ	ChartQA
Human baseline	(7 .)	179		8	-	5		-				5				95.7
Gemini (2023)	74.96	70.72	72.84	46.08	46.08	46.08	6.84	35.9	25.8	27.4	15.7	65.8	71.42	68.05	85.86	54.84
GPT-4V (2023)	72.64	66.32	69.48	75.44	65.68	70.56	3.31	28.5	18.2	18.2	11.3	69.6	73.50	71.30	81.51	61.97
Claude-3-haiku (2024)	47.12	42.00	44.56	76.88	63.44	70.16	4.58	36.9	25.8	25.2	14.2	61.4	71.70	73.14	95.83	50.65
Phi-3-vision-128k-inst (2024)	-	1.0	81.40	5		5	3.95	28.6	19.9	20.6	10.6	66.8	70.78	70.89	78.31	6.61
MatCha (2022)	90.20*	38.20*	64.20*					12.20	39.40				64.00	60.90	85.21	83.40
UniChart (2023)	88.56*	43.92*	66.24*	5		5	14.88	12.48	38.21			₩	5		94.01	91.10
T5 (2022; 2022b)	12	140	59.80*		8 .	2	57.93		-			23	-	-	-	-
VL-T5 (2022; 2022b; 2023)	2.2	070	59.12*	7 0	077.0		59.80	1.7.1			32.90	52	5			
OCR-T5 (2022c; 2023)	-	-	+		-	Ξ.	-	35.39	(m)/	-	10.49	80	~	-	+	-
ResNet + BERT (2023a)	-	070	17.1	7/	100	τ.	-		4750	5	100	62.70	-	-		-
ChartLLaMA (2023)			69.66*	<u> </u>	-	-	-	40.71		-	14.23	-		-	-	-
ChartAssistant (2024)	-	-	79.90*	-	-	-	15.50	41.00	-		15.20	-	-	-		92.00
Pix2struct (2022)	-		56.05*	+	-	-	12.70	38.00	8 4 0	×	10.30	-	-	-	÷	-
ChartInstruct (2024a)	320	323	72.00*	2	222	24	16.71	43.53	2010	12	13.83	22	72.65	1211	25	
ChartGemma (2024b)		((#C)	80.16*	*	-	-		-	0 0 0			70.33	72.17	-	-	-

Table 2: An overview of the evaluation results on five tasks: ChartQA, Chart Summarization, OpenCQA, Chart-Fact-checking, and Chart-to-Table. Here, the ChartQA results with a '*' denote results without using CoT. The results except from Gemini, GPT-4V, Claude-3-haiku, and Phi-3-vision-inst, are noted based on the best-performing models as presented in the respective research paper.

Conclusion

• This is the **first comprehensive analysis** of **LVLMs** such as GPT-4V, Gemini, Claude, and Phi-3 in real-world chart interpretation

• Key insights highlight both strengths and limitations of LVLMs, in generalizability and reasoning, Semantically rich text generation, Hallucinations, factual errors, and bias

• We hope that the insights gained from this study will catalyze further research and advancements in the emerging area of chart reasoning