
Motivation
• Recent advances in LVLMs,

▪ show promise in multimodal tasks,
▪but their abilities in chart comprehension remain under-explored

• Existing SoTA models typically,
▪ report quantitative performance on ChartQA
▪present no detailed analysis of the capabilities and limitations

• So we pose the following research question:

Methodology

Task and Datasets
● We evaluate the performance on 5 benchmark Chart Reasoning and

Comprehension tasks:

Results (Criteria-based Focused Evaluation)
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Conclusion
● This is the first comprehensive analysis of LVLMs such

as GPT-4V, Gemini, Claude, and Phi-3 in real-world
chart interpretation

● Key insights highlight both strengths and limitations of
LVLMs, in generalizability and reasoning, Semantically
rich text generation, Hallucinations, factual errors, and
bias

● We hope that the insights gained from this study will
catalyze further research and advancements in the
emerging area of chart reasoning
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Results (Task-specific General Evaluation)

Error Distribution

The "entity" category showed the most errors, followed by
"relation" and "contradictory" categories, aligning with
findings from other NLP research
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Hallucination Analysis (FAVA method – 6 hallucination types)

Model Comparison

Claude-3 had the highest error count, while Gemini and GPT-
4V showed better performance

Actionable Insight

Frequent hallucinations in entities and relations are often
fixable with minor edits, underscoring the need for improved
detection methods.

Model Performance in Text generation

GPT-4V produces longer summaries with detailed visual
information (Level 1 & 3), while Gemini generates concise
summaries with statistical and domain-specific information
(Level 2 & 4). However, all models lack sufficient
contextual insights (Level 4).

Analysis of Semantic Levels (Four-level semantic framework)

Semantic Understanding in Question-Answering

GPT-4V generally outperforms Gemini across different
semantic levels, though both struggle with complex line
charts, and Gemini excels in providing contextual
information beyond the chart data.

Figure: The performance of GPT-4V and Gemini in answering
questions (Accuracy) and generating sentences across various
semantic levels. ‘Coverage’ indicates average sentences per
semantic level in summaries.
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