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News Headline

❖ Importance

➢ Catching the reader's attention

➢ Providing Context

➢ Enhancing Search Engine Optimization (SEO)

➢ Establishing Credibility
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Headline Generation

❖ A special case of abstractive summarization
➢ Does not often maintain grammatical structure
➢ More extreme than extreme summarization
➢ Highly abstractive

❖ Involves
➢ Sentence compression
➢ Syntactic reorganization
➢ Lexical paraphrasing
➢ Sentence fusion
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Headline Generation

❖ Typically one-to-one mapping (input⇽article, output⇽headline)
➢ Takase et al. (2016), Zhang et al. (2018), Murao et al. (2019), Colmenares et al. (2019), Song et al. (2020), Li 

et al. (2021)
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Headline Generation

❖ Typically one-to-one mapping (input⇽article, output⇽headline)
➢ Takase et al. (2016), Zhang et al. (2018), Murao et al. (2019), Colmenares et al. (2019), Song et al. (2020), Li 

et al. (2021)

❖ Makes it difficult when the input is necessarily long
➢  Contextualized language models suffer from a limited sequence

❖ More challenging for low-resource languages
➢ Unavailability of large-scale human-annotated dataset
➢ Limited language models
➢ Lack of SOTA models for the downstream task
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Our Contributions

1. Provided Shironaam, a large-scale news headline generation dataset
a. Largest for a low-resource language i.e. Bengali
b. Contains auxiliary information along with article-headline pairs

2. Presented the concept of incorporating auxiliary information in headline generation
a. Developed an end-to-end SOTA model for headline generation

3. Developed BenSim, a module for measuring semantic similarity among Bengali sentences
a. Helps to encode long documents

4. Illustrated the utility and robustness by evaluating the performance with few-shot settings
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❖ 7 Bengali newspapers

❖ 13 different domains
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Raw Data Crawling

❖ 7 Bengali newspapers

❖ 13 different domains

Data Preprocessing

❖ Removed datetime and embedded items
❖ Preserved only Bengali texts
❖ Retained English numbers
❖ Removed repetitive terms from caption
❖ Discarded samples where len(caption) < 4 words
❖ Mapped random categories into general terms

➢ national ⇽ (national, whole-country, 
city-news, country, capital, city-roundup, 
south-city)

❖ Discarded samples with any missing features 
(i.e. headline, article, caption, or category)
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Raw Data Crawling

❖ 7 Bengali newspapers

❖ 13 different domains

Data Preprocessing

❖ Removed datetime and embedded items
❖ Preserved only Bengali texts
❖ Retained English numbers
❖ Removed repetitive terms from caption
❖ Discarded samples where len(caption) < 4 words
❖ Mapped random categories into general terms

➢ national ⇽ (national, whole-country, 
city-news, country, capital, city-roundup, 
south-city)

❖ Discarded samples with any missing features 
(i.e. headline, article, caption, or category)

Shironaam corpus

❖ Headline
❖ Article
❖ Image caption
❖ Category
❖ Topic word

900,000 samples

240,580 samples
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Category Total Jaccard (%)

Miscellaneous 1,744 11.71

Opinion 3,819 38.41

Politics 16,380 23.02

Edu-Career 4,372 53.58

Science-Tech 1,141 22.95

Religion 294 71.59

Total/Avg. 240,580 28.94

Category Total Jaccard (%)

Entertainment 17,565 13.56

National 128,226 24.60

Nature 510 23.66

International 33,329 18.09

Sports 19,235 17.82

Economy 7,032 39.37

Life-Health 6,933 17.83



Dataset Statistics

● (Train, valid, test): All categories 
(92, 2, 6)%
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Dataset Statistics

● (Train, valid, test): All categories 
(92, 2, 6)%

● Total (train, valid, test):          
(220574, 4994, 15012)

● Jaccard scores: Similarities 
(caption ⇆ headline)
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Features IndicNLG-BN Shironaam

Article Yes Yes

Headline Yes Yes

Image Caption No Yes

Category No Yes

Topic Word No Yes

#Samples 142,731 240,580
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Dataset

% of novel n-gram

unigram bigram trigram 4-gram

IndicNLG-BN 26.59 66.12 82.71 86.49

Shironaam 46.38 78.92 90.39 94.77

Features IndicNLG-BN Shironaam

Article Yes Yes

Headline Yes Yes

Image Caption No Yes

Category No Yes

Topic Word No Yes

#Samples 142,731 240,580
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Dataset IndicNLG
BN Shironaam IndicNLG

BN Shironaam IndicNLG
BN Shironaam

Article 199.83 252.01 15.19 20.05 614,374 605,750

Headline 10.03 6.53 1.19 1.00 65,553 76,732

Image Caption - 6.80 - 1.04 - 87,644

Topic Words - 3.21 - - - -
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HG modelArticle Headline HG modelArticle Headline

Image Caption

Topic Words

Previously: One-to-One Our task: Three-to-One
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Extractive
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Abstractive
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LEAD-1

Extractive

Baselines

Abstractive

EXT-ORACLE

IndicBART (mBART)

BED (BERT2BERT)

BanglaT5 (mT5)
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● Both encoder and decoder weights initialization with 
pre-trained BERT checkpoint (e.g. BanglaBERT)

● Cross attention weights randomly initialized

● Hugging Face encoder-decoder paradigm

BERT based Encoder Decoder (BED)



Proposed Model

39

a)      Article Only:

● Input: Article; Output: Headline

● First SOTA baseline in Bengali language  

BERT based Encoder Decoder (BED)
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Proposed Model
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b)      Article and Image Caption:

● Input: Article, Image caption; Output: Headline

● Parallel fusion mechanism

● Separated by a special token

BERT based Encoder Decoder (BED)
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Proposed Model
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BERT based Encoder Decoder (BED)

c)      Filtered Article and Image Caption:

● Input: Article, Image caption, Topic words;  Output: 
Headline

● Parallel fusion mechanism

● Separated by a special token

● Additionally BenSim
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46

BERT based Encoder Decoder (BED)

● BenSim Module:

○ Input: Article, Topic words; Output: Filtered article

○ Measures semantic similarity between Bengali 
sentences utilizing bangla-bert-base embeddings

○ Picks most relevant sentences from long articles 
(we consider top 40)

○ Mean pool operation followed by Cosine similarity
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Can we use auxiliary information (e.g., image caption and topic words) to improve the 
performance of the headline generation?RQ #1
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Can we use auxiliary information (e.g., image caption and topic words) to improve the 
performance of the headline generation?

Which domain(s) benefit from the auxiliary information in few-shot and non few-shot settings?

RQ #1

RQ #2
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Models
Rouge BLEU

BERT Score METEOR 
Score

R-1 R-2 R-L BLEU Score Brevity Penalty Length Ratio

Baselines

LEAD-1 30.50 13.86 28.00 5.65 97.71 2.48 74.63 29.90

EXT-ORACLE 39.92 22.89 37.28 9.17 97.16 2.30 77.16 39.65

IndicBART 28.76 12.65 27.11 15.03 99.91 1.14 74.95 20.39

BanglaT5 44.13 23.03 42.12 13.05 91.33 1.15 80.13 34.65

Our 
Ablations

BED Base 44.22 24.18 42.28 22.06 94.47 0.94 80.53 34.16

BED (Article+Caption) 51.62 33.62 49.94 31.39 96.02 0.96 82.93 42.57

BED (FilteredArticle+Caption) 52.19 34.27 50.31 31.80 98.57 0.99 83.10 43.52
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Experiments
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● Few lengthier articles in Shironaam

● Slightly better performance

● Learns faster with the filtered articles

● Score difference will increase with the 
number of longer articles

● Following RQ#1, auxiliary information aids 
headline generation
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Domain Specific Analysis

● Two baselines: BED (base), 
BanglaT5 (BNT5)

● Few shot domain less than 6500 
samples

● Entertainment: Casual, click-bait 
style, no identical nature

● Miscellaneous: Randomness of 
various domains
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Future Works

● Utilization of multimodal information

● Human evaluation on generated samples

● Language agnostic model
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Thank You!
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