

Abstractive Unsupervised Multi-Document Summarization using Paraphrastic Sentence Fusion

Mir Tafseer Nayeem, Tanvir Ahmed Fuad, Yllias Chali

University of Lethbridge Lethbridge, Alberta, Canada

What is summarization?

The process of finding the **most relevant informations** in a text and presenting them in a **condensed** form.

- Single Document Summarization
 - Given a single document produces abstract, outline or headline

Multi-Document Summarization

A cluster of related documents about the same topic

Summaries can be classified as:

- Extractive
 - Extract important sentences from the original text without any modification.
- Abstractive
 - Abstractive methods rewrite sentences from scratch, involving compression, fusion and paraphrasing.

Why Multi-Document Summarization (MDS)?

- Often times, we want a summary for a whole topic, rather than one document.
 - E.g. different news articles about the same event

 More challenging, as we need to think about the relationships between documents.

Contributions

- An abstractive sentence generation model is developed which jointly performs sentence fusion and paraphrasing.
- The sentence level model is then applied to design a full abstractive multi-document summarization.
- Different from the recent neural abstractive models, this model is
 - Completely unsupervised
 - Full abstractive
 - Applied to multi-document summarization
 - Domain independent ; tested on news document and user reviews
- An optimal solution is proposed for the classical summary length limit problem in multi-document setting.

Proposed Approach

Presentation Outline

1. Related Work

- 2. Paraphrastic Sentence Fusion
 - 1. Word Graph Construction
 - 2. Candidate Ranking
 - 1. Sentence Embedding
 - 3. Context Sensitive Lexical Substitution
 - 1. Substitution Selection
 - 2. Substitution Ranking
 - 3. Confidence Score

3. Multi-Document Abstractive Summarization

- 1. Sentence Clustering
- 2. Abstractive Sentence Selection
- 3. Summary Length Limit Problem
- 4. Experiments
 - 1. Sentence Level Experiments
 - 2. Multi-Document Level Experiments

1. Related Work

Early Works:

- Word deletion based approaches.
 - Clarke and Lapata 2006, 2008
- Graph based approaches.
 - Filippova 2010, Boudin and Morin 2013
- Recent Works:
 - Attention based encoder-decoder neural network.
 - Bahdanau 2015, Luong 2015, Cheng and Lapata 2016
 - Seq2seq based learning approaches.
 - Rush 2015
 - Multi-Document based approaches.
 - Yasunaga 2017, Li 2017

Presentation Outline

1. Related Work

2. Paraphrastic Sentence Fusion

- 1. Word Graph Construction
- 2. Candidate Ranking
 - 1. Sentence Embedding
- 3. Context Sensitive Lexical Substitution
 - 1. Substitution Selection
 - 2. Substitution Ranking
 - 3. Confidence Score

3. Multi-Document Abstractive Summarization

- 1. Sentence Clustering
- 2. Abstractive Sentence Selection
- 3. Summary Length Limit Problem
- 4. Experiments
 - 1. Sentence Level Experiments
 - 2. Multi-Document Level Experiments

2. Paraphrastic Sentence Fusion

- Most of the previous works are based on deletion based compression.
- Finding representation for sentence abstraction using sentence fusion and lexical paraphrase.
- We apply our model to the multi-document abstractive text summarization.
- Our model balances information coverage and abstractiveness.

2.1 Word Graph Construction

- We generate a one sentence representation from a cluster of related sentences using the word-graph approach (Boudin and Morin, 2013).
- $S = \{S_1, S_2, \dots, S_n\}$ is a cluster of related sentences. We construct a word-graph G = (V, E) by iteratively adding sentences to it.
- The vertices are the words along with the parts-of-speech (POS) tags and directed edges are the adjacent words in the sentences.
- Each sentence is connected to dummy start and end nodes to mark the beginning and ending of the sentences.

2.1 Word Graph Construction

- S1: In Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.
- S2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3% to 12,618.

2.1 Word Graph Construction

- Ex1: In Asia Hong Kongs Hang Seng index fell 8.3%.
- Ex2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3%.

• ExK: Elsewhere in Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.

12

2.2 Candidate Ranking

- We rank the sentences using TextRank algorithm (Mihalcea and Tarau, 2004).
- An undirected graph is constructed where sentences are vertices, and edge weights are the similarity between vertices (sentences).
- Instead of lexical overlap, we use the semantic information using sentence embedding.
- After constructing the graph, we can run the **TextRank** algorithm on it by repeatedly applying the updated TextRank rule until convergence.

2.2.1 Sentence Embedding

Bi-GRU processes the input both from forward and backward direction.

- For each position t, forward and backward states are concatenated into final hidden state $h_t = \overrightarrow{h_t} \oplus \overleftarrow{h_t}$
- Here, $\overrightarrow{h_t} = GRU\left(\overrightarrow{h_{t-1}}, e(w_t)\right)$ and $\overleftarrow{h_t} = GRU\left(\overleftarrow{h_{t+1}}, e(w_t)\right)$
- Output sentence embedding $x_i = h_L$ for the sentence S_i

2.2.1 Sentence Embedding

• Sentence, $S = (w_{1}, w_{2}, ..., w_{L})$ where L is length of the sentence S.

- The sentence is encoded using bi-direcational GRUs.
- For uni-directional case, while reading input:
 - $h_t = GRU(h_{t-1}, e(w_t))$
 - Where $h_t \in \mathbb{R}^n$ encodes all content at time t computed from h_{t-1} and $e(w_t)$
 - $e(w_t) \in \mathbb{R}^m$ is the m-dimensional embedding of current word using pre-trained embedding **word2vec**. Here, m=300.

2.3 Context Sensitive Lexical Substitution

 Target Word Identification for Substitution: We take only the nouns and verbs for possible substitution candidates.

- Substitution Selection
- Substitution Ranking
- Confidence Score

2.3.1 Substitution Selection

- PPDB 2.0 (Pavlick et al., 2015) provides millions of lexical, phrasal and syntactic paraphrases.
- For instance, we can gather lexical substitution set S = {gliding, sailing, diving, travelling} for the target word (t = flying) from PPDB 2.0.
- We hardcoded the model to select substitutes with the same POS tag and that are not a morphological variant (such as fly, flew, flown).

2.3.2 Substitution Ranking

- word2vecf (Levy and Goldberg, 2014) capture functional word similarity (manage → supervise) rather than topical similarity (manage → manager)
- We use the word and context vectors released by (Melamud et al., 2015) which contains 173k words and about 1M syntactic contexts.
- addCos measures the appropriateness of a substitute s from the substitution set S, for the target word t in the set of the target word's context elements

 $C = \{c_1, c_2, \dots, c_n\},\$

 $addCos(s|t,C) = \frac{cos(s,t) + \sum_{c \in C} cos(s,c)}{|C| + 1}$

 Finally, we select the best substitution s according to maximum addCos scores over 0.7 and replace it with the target word t.

2.3.3 Confidence Score

- When the substitutions are placed, probabilities are assigned to sequence of words in a generated candidate.
- A sequence of *m* words $\{w_1, w_2, w_3, ..., w_m\}$. The score **CS** (Confidence Score) assigned to each candidate can be described as:

•
$$CS(w_1, ..., w_m) = \frac{1}{1 - Score_{LM}(w_1, ..., w_m)}$$

 In our experiment, a language model is used trained on English Gigaword Corpus

2.3.3 Confidence Score

 K-candidate fusions are ranked and N-best paraphrastic sentence fusions are found which balances information coverage and abstractiveness.

• Score of a candidate sentence fusion, *c* is calculated, where $\alpha = 0.5$ to give equal importance,

 $score(c) = \alpha.Rank(c) + (1 - \alpha).\sum_{V_i = V_{start}}^{V_{end}} addCos(V_i) + CS(N(V_i))$

Information Coverage

Abstractiveness

• Where, $addCos(V_i)$ is the addCos score of the vertex V_i and $N(V_i)$ is the neighbors of the vertex V_i

Presentation Outline

- 1. Related Work
- 2. Paraphrastic Sentence Fusion
 - 1. Word Graph Construction
 - 2. Candidate Ranking
 - 1. Sentence Embedding
 - 3. Context Sensitive Lexical Substitution
 - 1. Substitution Selection
 - 2. Substitution Ranking
 - 3. Confidence Score

3. Multi-Document Abstractive Summarization

- 1. Sentence Clustering
- 2. Abstractive Sentence Selection
- 3. Summary Length Limit Problem
- 4. Experiments
 - 1. Sentence Level Experiments
 - 2. Multi-Document Level Experiments

3. Multi-Document Abstractive Summarization

 We apply our paraphrastic fusion model to generate multi-document level summary under a certain length limit.

 Given figure describes our each of the steps involved in multi-document summarization.

3.1. Sentence Clustering

- This step is very important for two main reasons.
 - Selecting at most one sentence from each cluster will decrease redundancy from the summary side.
 - Selecting sentences from the different set of clusters will increase the information coverage from the document side as well.
- For grouping similar sentences. We use a hierarchical agglomerative clustering (Murtagh and Legendre, 2014) with a complete linkage criteria. Similarity threshold (τ = 0.5) was set to stop the process.

- We use the concept-based ILP framework (Gillick and Favre, 2009) with suitable changes to select the best subset of sentences.
- The system extracts sentences that cover important concepts while ensuring the summary length is within a limit.
- Instead of bigrams we use keyphrases as concept.
- We extracted keyphrases using **RAKE** tool (Rose et al., 2010). We assign a weight to each keyphrase using the score returned by RAKE.
- In order to ensure only one sentence per cluster we add an extra constraint.

Maximize the sum of keyphrase weights

 $max: \sum_{i} \bar{w}_{i}k_{i} + \sum_{j} (score(s_{j}) + \frac{l_{j}}{L}) \cdot s_{j})$ Subject to : $\sum_{j} l_j s_j \leq L$ $s_j Occ_{ij} \le k_i, \quad \forall i, j$ $\sum_{j} s_j Occ_{ij} \ge k_i, \quad \forall i$ $\sum s_j \le 1, \quad \forall g_c$ $j \in g_c$ $k_i \in \{0,1\} \quad \forall i$ $s_j \in \{0,1\} \quad \forall j$

Final score for the candidate sentence

 $max: \left(\sum_{i} \bar{w}_{i}k_{i} + \sum_{i} (score(s_{j}) + \frac{l_{j}}{L}) \cdot s_{j}\right)$ Subject to : $\sum_{i} l_j s_j \leq L$ $s_j Occ_{ij} \le k_i, \quad \forall i, j$ $\sum_{j} s_j Occ_{ij} \ge k_i, \quad \forall i$ $\sum s_j \le 1, \quad \forall g_c$ $j \in g_c$ $k_i \in \{0,1\} \quad \forall i$ $s_j \in \{0,1\} \quad \forall j$

 $max: (\sum \bar{w}_i k_i + \sum (score(s)))$ (s_j) Subject to : $\sum_{j} l_j s_j \leq L$ $s_j Occ_{ij} \le k_i, \quad \forall i, j$ Maximize the summary length $\sum_{j} s_j Occ_{ij} \ge k_i, \quad \forall i$ $\sum s_j \le 1, \quad \forall g_c$ $j \in g_c$ $k_i \in \{0,1\} \quad \forall i$ $s_j \in \{0,1\} \quad \forall j$

 $max: (\sum_{i} \bar{w}_{i}k_{i} + \sum_{j} (score(s_{j}) + \frac{l_{j}}{L}) \cdot s_{j})$ Subject to: $\sum l_j s_j \leq L$ $s_j Occ_{ij} \le k_i, \quad \forall i, j$ Summary length under a certain limit $\sum_{j} s_j Occ_{ij} \ge k_i, \quad \forall i$ $\sum s_j \le 1, \quad \forall g_c$ $j \in g_c$ $k_i \in \{0,1\} \quad \forall i$ $s_j \in \{0,1\} \quad \forall j$

$$max : (\sum_{i} \bar{w}_{i}k_{i} + \sum_{j} (score(s_{j}) + \frac{l_{j}}{L}) \cdot s_{j})$$

$$Subject to : \sum_{j} l_{j}s_{j} \leq L$$

$$s_{j}Occ_{ij} \leq k_{i}, \quad \forall i, j$$

$$\sum_{j} s_{j}Occ_{ij} \geq k_{i}, \quad \forall i$$

$$\sum_{j \in g_{e}} s_{j} \leq 1, \quad \forall g_{e}$$

$$k_{i} \in \{0, 1\} \quad \forall i$$

$$s_{j} \in \{0, 1\} \quad \forall j$$

Indicates presence of sentence

7

3.3. Summary Length Limit Problem

- In all the previous research, either truncated at last character or last sentence was removed.
- Recently four methods were proposed to solve this issue:
 - Two of these are based on different decoding procedure
 - Other two are learning based
- Recently proposed methods are also limited to generate a single sentence headline.
- Our model can effectively produce different length variations because of the shortest path strategy.
- In the proposed ILP formulation, the model tries to maximize the total summary length to optimally tackle length limit.

Presentation Outline

- 1. Related Work
- 2. Paraphrastic Sentence Fusion
 - 1. Word Graph Construction
 - 2. Candidate Ranking
 - 1. Sentence Embedding
 - 3. Context Sensitive Lexical Substitution
 - 1. Substitution Selection
 - 2. Substitution Ranking
 - 3. Confidence Score
- 3. Multi-Document Abstractive Summarization
 - 1. Sentence Clustering
 - 2. Abstractive Sentence Selection
 - 3. Summary Length Limit Problem

4. Experiments

- 1. Sentence Level Experiments
- 2. Multi-Document Level Experiments

4. Experiments

Sentence Level Experiment.

Document Level Experiment.

4.1. Sentence Level Experiments

• Dataset:

- Human generated fusion dataset by McKeown et al 2010
- Evaluation Metric:
 - **BLEU** relies on only exact matching of n-grams.
 - **SARI** which compares **S**ystem output **A**gainst **R**eferences and against the **I**nput sentence. It computes average of n-gram precision and recall of 3 rewrite operations: addition, copying and deletion.
 - METEOR-E is an augmented version of METEOR using distributed representations.
 - Compression Ratio is a measure of how concise a compression. A compression ratio of zero implies that the source sentence is fully uncompressed.
 - Copy Rate how many tokens are copied to the abstract sentence from the source sentence without

paraphrasing. Copy Rate = $\frac{|S_{orig} \cap S_{abs}|}{|S_{abs}|}$

4.1. Sentence Level Experiments

• Baseline Systems and Our System:

Input Sentences	Bush, who initially nominated Roberts to replace retiring Justice Sandra Day O'Connor, tapped him to lead the court the day after Rehnquist's death. President Bush initially nominated Roberts in July to succeed retiring Justice Sandra Day O'Connor.
(Filippova, 2010)	president bush initially nominated roberts to replace retiring justice sandra day o'connor .
(Boudin and Morin, 2013)	bush , who initially nominated roberts in july to succeed retiring justice sandra day o'connor , tapped him to lead the court the day after rehnquist 's death .
(Banerjee et al., 2015)	bush, who initially nominated roberts to replace retiring justice sandra day o'connor, tapped him to lead the court the day after rehnquist 's death.
Paraphrastic Fusion (ours)	president bush initially recommended roberts in july to substitute retiring justice sandra day o'connor, tapped him to run the court the day after rehnquist 's death.

4.1. Sentence Level Experiments

Model	BLEU	SARI	METEOR-E	Compression Ratio	Copy Rate
(Filippova, 2010)	40.6	34.6	0.31	0.57	99.8
(Boudin and Morin, 2013)	44.0	37.2	0.36	0.42	99.9
(Banerjee et al., 2015)	42.3	36.5	0.34	0.45	99.8
Paraphrastic Fusion (ours)	42.5	37.4	0.43	0.41	76.2

Our model balances information coverage : BLUE and SARI.

- Our model completes abstractiveness (METEOR-E, Copy Rate) instead over compressing (Compression Ratio).
- A slightly higher score in **SARI** because of multiple human abstractive rewrites.
- Copy Rate clearly indicates that other baseline systems are doing completely deletion based compression.
- Our higher score in METEOR-E because of the lexical substitution operation.
- Reasons behind a little bit lower BLEU score:
 - Our model balances between information coverage and abstractiveness.
 - **BLEU** works well on surface level lexical overlap.

4.2. Multi-Document Level Experiments

Dataset:

- DUC 2004 (Length limit = 100 words)
- Opinosis 1.0 (Length limit = 15 words)
- Evaluation metric:
 - ROUGE-1 (unigram matches)
 - ROUGE-2 (bigram matches)
 - ROUGE-WE (Considering word embeddings to compute semantic similarity)
- We report the limited length recall scores for the evaluation metrics.

4.2. Multi-Document Level Experiments

• Results:

Dataset	Models	R-1	R-2	R-WE-1	R-WE-2
DUC 2004	LexRank (Erkan and Radev, 2004)	35.95	7.47	36.91	7.91
	Submodular (Lin and Bilmes, 2011)	39.18	9.35	40.03	9.92
	RegSum (Hong and Nenkova, 2014)	38.57	9.75	39.12	10.33
	ILPSumm (Banerjee et al., 2015)	39.24	11.99	40.21	12.08
	PDG* (Yasunaga et al., 2017)	38.45	9.48	39.07	10.24
	ParaFuse_doc (ours)	40.07	12.04	42.31	12.96
Opinosis 1.0	TextRank (Mihalcea and Tarau, 2004)	27.56	6.12	28.20	6.45
	Opinosis (Ganesan et al., 2010)	32.35	9.13	33.54	9.41
	Biclique (Muhammad et al., 2016)	33.03	8.96	33.91	9.25
	ParaFuse_doc (ours)	33.86	9.74	34.46	10.09

Thank You! (?) **Questions**?

You can also email us at <u>mir.nayeem@uleth.ca</u> || <u>t.fuad@uleth.ca</u>