
Paraphrastic Fusion for Abstractive Multi-Sentence
Compression Generation

Mir Tafseer Nayeem
University of Lethbridge
Lethbridge, AB, Canada
mir.nayeem@uleth.ca

Yllias Chali
University of Lethbridge
Lethbridge, AB, Canada

chali@cs.uleth.ca

ABSTRACT
This paper presents a first attempt towards finding an abstrac-
tive compression generation system for a set of related sentences
which jointly models sentence fusion and paraphrasing using con-
tinuous vector representations. Our paraphrastic fusion system
improves the informativity and the grammaticality of the gener-
ated sentences. Our system can be applied to various real world
applications such as text simplification, microblog, opinion and
newswire summarization. We conduct our experiments on human
generated multi-sentence compression datasets and evaluate our
system on several newly proposed Machine Translation (MT) evalu-
ation metrics. Our experiments demonstrate that our method brings
significant improvements over the state of the art systems across
different metrics.
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1 INTRODUCTION
The task of automatic document summarization aims at finding the
most relevant informations in a text and presenting them in a con-
densed form. A good summary should retain the most important
contents of the original document or a cluster of documents, while
being non-redundant and grammatically readable. There are two
types of summarizations: extractive summarization and abstrac-
tive summarization. Extractive summarization systems select the
salient (important) sentences from the source document without
any modification to create a summary. On the other hand, abstrac-
tive summarization methods, which are still a growing field, are
highly complex as they need extensive natural language genera-
tion to rewrite the sentences. The abstractive techniques which
is traditionally used are sentence compression, fusion and lexical
paraphrasing. However, in case of multi-document summarization
where source documents usually contain similar information, the
extractive methods would produce redundant summary or biased
towards specific source document.
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Multi-sentence compression (MSC) can be a useful solution for
the above problem. It usually takes a group of related sentences
and produces an output sentence through merging the sentences
about the same topic [2]. On the other hand, Lexical paraphrasing
aims at replacing some selected words with other similar words
while preserving the meaning of the original text. A good lexical
substitution for a target word needs to be semantically similar to the
target word and compatible with the given context [8]. For example,
the sentence "Jack composed these verses in 1995" could be lexically
paraphrased into "Jack wrote these lines in 1995" without altering
the sense of the initial sentence.

2 RELATEDWORKS
Most of the previous MSC approaches rely on syntactic parsers to
build dependency tree [5]. Unfortunately, syntactic parsers are not
available for all the languages. As an alternative, word graph-based
approaches that only require a POS tagger and a list of stopwords
have been proposed first by Filippova [4]. A directed word graph is
constructed in which nodes represent words and edges represent
the adjacency between words in a sentence. Hence, compressed
sentences are generated by finding k-shortest paths in the word
graph. Boudin and Morin [3] improved Filippova’s approach by
re-ranking the fusion candidate paths according to keyphrases to
generate more informative sentences. However, grammaticality is
sacrificed to improve informativity in these works.

Banerjee [1] proposed an abstractive multi-document summa-
rization system using Filippova’s sentence fusion approach [4]
combined with Integer Linear Programming sentence selection.
Following Banerjee’s work, several recent approaches have been
proposed with slight modifications. Multiword Expressions (MWE)
was exploited in [14] to produce more informative compressions.
Recently, [15] use syntax factor along with the Banerjee’s model to
generate compressions. However, all the above mentioned systems
try to produce compressions by copying the source sentence words,
no paraphrasing is involved in the process.

3 PARAPHRASTIC SENTENCE FUSION :
MODEL

3.1 Sentence Abstraction Techniques
Most of the previous works rely only on one of the following tech-
niques for abstracting sentences. Instead, in this paper we take
the first step towards finding a joint representation for sentence
abstraction using sentence fusion and lexical paraphrase rather
than treating these two independently.

(1) Sentence Compression
• [ACDEFAGED] ⇒ [ACDGED]
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• Deletion of unimportant words from the input sentence.
• Mainly used for summarizing a sentence or headline gen-
eration.

(2) Sentence Fusion
• [ACDEFAGED] + [CDEFBADE] ⇒ [ACDGEDBADE]
• Involves the merging of two or more sentences into one.
• Reduces redundancy in the final generated summary.

(3) Lexical Paraphrase
• [ACDEFAGEDHB] ⇒ [ABGEFABCDHB]
• Replaces complex words with simple words to make the
sentence easier to understand.

3.2 Sentence Fusion
3.2.1 Word Graph Construction. In order to generate a one sen-

tence representation from a cluster of related sentences we use
the word-graph approach of [4]. Let S = {s1, s2, ..., sn } is a set of
related sentences, we construct a graph G = (V ,E) by iteratively
adding sentences to it. The vertices are the words along with the
parts-of-speech (POS) tags and directed edges are formed by simply
connecting the adjacent words in the sentences. Once the first sen-
tence is added, words from the other related sentences are mapped
onto a node in the graph provided that they have exactly the same
lower cased word form and the same POS tag. Each sentence is
connected to dummy start and end nodes to mark the beginning
and ending of the sentences.

In Filippova’s approach [4], punctuation marks are not consid-
ered. To generate well-punctuated compressions which in turn
represents complete sentences, we considered a fourth step for
adding punctuation marks in the graph following [3]. Consider the
following two sentences,

S1: The video was made on Feb. 19-20, 2003.
S2: The morning after the video was made, she said, three social

workers came and interviewed them.
As we can see, the two input sentences contain similar infor-

mation, but differs in sentence length, syntax, and the detail of
information. After constructing the word-graph, we can generate
K-Shortest paths from dummy start node to end node in the word
graph. For example, we can generate paths like the following:

Ex1: The morning after the video was made on feb. 19-20 , 2003.
The main challenge of sentence fusion is to rank sentences gen-

erated from the K-Shortest paths ( K is usually ranges from 50 to 200
according to the literature [4] [3]) that are grammatically correct
and contain the most important information. Hence, we design a
candidate re-ranking strategy which is generated from K-Shortest
paths based on grammaticality and informativeness.

3.2.2 Candidate Ranking. We rank the fused candidates by ap-
plying TextRank algorithm [9] which involves constructing an
undirected graphwhere candidates are vertices, and weighted edges
are formed by connecting candidate sentences by a similarity met-
ric. TextRank determines the similarity based on the lexical overlap
between two sentences. However, this algorithm has a serious draw-
back: If two sentences are talking about the same topic without
using any overlapped words, there will be no edge between them.
Instead, we use the continuous skip-gram model introduced by [10]
to measure the semantic similarity along with entity overlap. We

take the pre-trained word embeddings1 [10] of all the non stop-
words in a sentence and take the weighted vector sum according to
the term-frequency (TF ) of a word (w) in a sentence (S). Where, E is
the word embedding model and idx(w) is the index of the wordw .
More formally, for a given sentence S , the weighted sum becomes,

S =
∑
w ∈S

TF (w, S) · E[idx(w)]

Then we calculate the cosine similarity between the sentence
vectors obtained from the above equation to find the relative dis-
tance between Si and Sj . We also calculate NESim(Si , Sj ) by finding
the Named Entities present in Si and Sj using NLTK Toolkit, then
calculating their overlap.

CosSim(Si , Sj ) =
Si · Sj

| |Si | | | |Sj | |

NESim(Si , Sj ) =
|Entity(Si ) ∩ Entity(Sj )|

min(|Entity(Si )| , |Entity(Sj )|)

Sim(Si , Sj ) = λ · NESim(Si , Sj ) + (1 − λ) ·CosSim(Si , Sj ) (1)

The overall similarity calculation involves both CosSim(Si , Sj )
and NESim(Si , Sj ) where, 0 ≤ λ ≤ 1 decides the relative contri-
butions of them to the overall similarity computation. We use the
similarity function described in Equation (1) by empirically setting
λ = 0.3.

After we have our graph, we can run the TextRank algorithm
on it. This involves initializing a score of 1 for each vertex, and
repeatedly applying the TextRank update rule until convergence.
The update rule is:

Rank(Si ) = (1 − d) + d ∗
∑

Sj ∈N (Si )

Sim(Si , Sj )∑
Sk ∈N (Sj ) Sim(Sj , Sk )

Rank(Sj )

Where, Rank(Si ) indicates the importance score assigned to sen-
tence Si . N (Si ) is the set of neighboring sentences of Si .

3.2.3 GrammaticalQuality. We compute grammatical quality of
a fused sentence candidate using a 3-gram (trigram) language model
same as [1], which assigns probabilities to sequence of words in a
generated candidate. Suppose that a candidate contains a sequence
ofm words {w1,w2,w3, ....wm }. The score GQ (Gramatical Quality)
assigned to each candidate is defined as follows:

GQ (w1, ...., wm ) =
loд2

∏m
t=3 P (w |wt−1wt−2)

N
(2)

The scores are normalized by N , the word length of the candi-
dates. In our experiments, we used a 3-gram model that is trained
on the English Gigaword corpus 2.

Finally, we re-rank the K candidate fusions and find the N-best
sentence fusion using the following equation which balances the
grammaticality and the informativeness. The score of a candidate
sentence fusion c is given by (where, we empirically set α = 0.6)

score(c) = α · Rank(c) + (1 − α) ·GQ(c) (3)
1https://code.google.com/archive/p/word2vec/
2Available : http://www.keithv.com/software/giga/ (We used the 64K NVP vocabulary
version)
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3.3 Lexical Substitution in Context
3.3.1 Target Word Identification for Substitution . We first label

the words in all N-best candidates using Part-Of-Speech (POS)
tagging. We then filter out the named entities and take only the
nouns and verbs for possible substitution candidates.

3.3.2 Substitution Selection. The PPDB 2.03 [12] provides mil-
lions of lexical, phrasal and syntactic paraphrases which comes into
packages of different sizes (going from S to XXXL)4. For instance,
we can gather S = {дlidinд, sailinд,divinд, travellinд} lexical sub-
stitution set for the target word (t = f lyinд) from PPDB 2.0. We
hardcoded the model to select substitutes with the same POS tag
and that are not a morphological variant ( e.g. fly, flew, flown ).

3.3.3 Substitution Ranking. Word embeddings are low dimen-
sional vector representations of words such as word2vec [10] that re-
cently gainedmuch attention in various semantic tasks.Word2vecf[6]
is an extension of word2vec to produce syntax-based word embed-
dings. They show that these embeddings tend to capture functional
word similarity (as in manage→ supervise) rather than topical sim-
ilarity (as in manage → manager). We use the word and context
vectors released by [8] which was shown to perform strongly on
lexical substitution task. These embeddings contain 600d vectors
for 173k words and about 1M syntactic contexts. Their measure
addCos for estimating the appropriateness of a substitute s from
the substitution set S , for the target word t in the set of the target
word’s context elements C = {c1, c2, ..., cn }, is defined as follows,

addCos(s |t ,C) =
cos(s, t) +

∑
c ∈C cos(s, c)

|C | + 1
Finally, we select the best substitution s according to maximum

addCos scores over 0.7 and replace it with the target word t.

4 EXPERIMENTAL SETUP
Our system first takes a set of related texts as input and preprocesses
them which includes tokenization, Part-Of-Speech (POS) tagging,
and Lemmatization. We use NLTK toolkit to preprocess each sen-
tence to obtain a more accurate representation of the information.
We generate 50 shortest paths from start to end nodes from each
cluster in the graph using the K-shortest path algorithm [3]. Paths
shorter than eight words or that do not contain a verb are filtered
out. To ensure pure abstractive compression generation, we remove
the paths that have cosineSimilarity ≥ 0.9 to any of the original
sentence in the cluster. We then select 3-Best candidates from K
paths for lexical substitution. For fair evaluation, we also select the
3-best candidates for the baseline systems that we compare with
our model.

4.1 Dataset
We conducted experiments on the human generated sentence fusion
dataset released by [7]. This dataset consists of 300 English sen-
tence pairs taken from newswire clusters accompanied by human-
produced sentence fusions rewrites collected via Amazon’s Me-
chanical Turk service. We filtered the sentences which have no
main verbs. The resulting set contains 296 pairs of sentences.
3http://paraphrase.org/
4For our experiment, we use the XXL lexical one

4.2 Evaluation Metric
We evaluate our system automatically using various automatic
metrics. We also introduce some new automatic evaluation metrics.

BLEU [11] is the most commonly used metric for Machine Trans-
lation evaluation. BLEU relies on exact matching of n-grams and
has no concept of synonymy or paraphrasing. We used the imple-
mentation provided in NLTK5 considering upto 4-gram matching.

SARI [16] a recently proposed metric which compares System
output Against References and against the Input sentence. SARI
computes the arithmetic average of n-gram precision and recall
of three rewrite operations: addition, copying, and deletion which
correlates well with human references.

METEOR-E [13] uses a combination of both precision and recall
in METEOR metric. Furthermore, the alignment is based on exact
token matching, followed by WordNet synonyms, stemmed tokens
and then look-up table paraphrases. Recently, an augmented version
of METEOR using distributed representations named METEOR-
E[13] has been released6.

Compression Ratio is a measure of how terse a compression
is and is expressed in the following equation. A compression ratio
of zero implies that the source sentence is fully uncompressed.

Compression Ratio (CR) =
#tokdel
#tokor iд

Copy RateWe define copy rate as how many tokens are copied
to the abstract sentence from the source sentence without para-
phrasing in the following equation. Copy rate of 100% means no
paraphrasing is involved in the process.

Copy Rate =
|Sor iд ∩ Sabs |

|Sabs |

GrammaticalityWe define grammaticality as the parsing prob-
lem, if the sentence is successfully parsed, then it has valid grammar;
if not, then it doesn’t. We didn’t use any statistical parser because,
the parser will still return a parse for a sentence with bad grammar
as it uses the statistics to make the best guess possible. Instead, we
use a chart parser to parse a sentence, given a CFG (Context-Free
Grammar) which is implemented in NLTK Toolkit.

4.3 Baseline Systems and Results
We compare our systemwith Filippova (2010) [4], Boudin andMorin
(2013)7 [3] and Banerjee et al. (2015)8 [1]. Table 2 shows the output
generated by the baseline and our system. We report our system’s
performance compared with the baselines in terms of different eval-
uation metrics in Table 1. We get slightly higher score in terms of
SARI because of the multiple human abstractive rewrites along
with input sentence. Copy Rate score of other baseline systems
clearly indicates the fact that they are doing completely compres-
sion, no paraphrasing is involved. Moreover, we also get higher
score in METEOR-E metric because of the lexical substitution op-
eration. In our experiments, we used LM (Language Model) which
tends to choose longer sentences. Therefore, we get lower com-
pression ratio than Filippova (2010). However, we achieve higher
5https://github.com/nltk/nltk/tree/develop/nltk/translate
6https://github.com/cservan/METEOR-E
7https://github.com/boudinfl/takahe
8https://github.com/StevenLOL/AbTextSumm
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Table 1: Comparison with baselines across different automatic evaluation metrics (the scores are averaged)

Model BLEU SARI METEOR-E Compression Ratio Copy Rate Grammaticality(%)
Filippova (2010) [4] 40.6 34.6 0.31 0.57 99.8 58.2%

Boudin and Morin (2013) [3] 44.0 37.2 0.36 0.42 99.9 65.8%
Banerjee et al. (2015) [1] 42.3 36.5 0.34 0.45 99.8 71.4%
Paraphrastic Fusion 42.5 37.4 0.43 0.41 76.2 73.5%

Table 2: The output generated by the baseline and our system (the paraphrased words are marked bold)

Input Sentences
Bush, who initially nominated Roberts to replace retiring Justice Sandra Day O’Connor,
tapped him to lead the court the day after Rehnquist’s death.
President Bush initially nominated Roberts in July to succeed retiring Justice Sandra Day O’Connor.

Filippova (2010) president bush initially nominated roberts to replace retiring justice sandra day o’connor .

Boudin and Morin (2013)
bush , who initially nominated roberts in july to succeed retiring justice sandra day o’connor ,
tapped him to lead the court the day after rehnquist ’s death .

Banerjee et al. (2015)
bush , who initially nominated roberts to replace retiring justice sandra day o’connor ,
tapped him to lead the court the day after rehnquist ’s death .

Paraphrastic Fusion
president bush initially recommended roberts in july to accomplish retiring justice sandra day o’connor ,
tapped him to run the court the day after rehnquist ’s death .

grammaticality percentage. As expected, we get little lower BLEU
score compared to Boudin and Morin (2013) for two main reasons
(1) We tried to balance between gammaticality and informativity
(2) BLEU works well on surface level lexical overlap.

5 CONCLUSION AND FUTUREWORK
In this work, we designed a new abstractive compression generation
model which can jointly perform sentence fusion and paraphrasing
using skipgram word embedding model. In future, we will apply
our model to abstractive multidocument summarization system
where documents usually contain related set of sentences.
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