

Product Entity Matching (PEM)

• Product Entity Matching (PEM) is a subfield of record linkage that focuses on linking records that refer to the same product.

Applications

- ✓ Price Comparison
- ✓ Comprehensive Catalog
- ✓ Efficient Data Management
- ✓ Increased Sales

Challenges

- Multiple features of a product may be packed into a product title.
- Some product titles are **highly similar** but are labeled as **non-matching pairs**.
- Pieces of information may be in **different places** for different products.
- Existing datasets, a **fixed number of attributes** are given for all samples.

Amazon Product Title	Google Product Title
"mcafee total protection 2007 3 users"	"mtp07emb3rua mcafee total protection 2007 complete package 3 users cd mini-box"
"britannica deluxe"	"britannica deluxe 2008"
"nero 7 ultra edition enhanced"	"70009 nero ultra edition enhanced v.7 complete package 1 user cd win"

Table 1: A few hard negative examples [20]. Despite their highly similar titles, product pairs are not the same.

Product Entity Matching via Tabular Data

Ali Naeim abadi, Mir Tafseer Nayeem, and Davood Rafiei University of Alberta

Contributions

TAble & Text for Entity Matching (TATEM) Attribute Ranking Module (ARM)

- Enrich **popular and challenging** benchmarks with complementary product tables.
- Propose a **new serialization technique** to encode semi-structured tables.
- TATEM employs both tabular textual and information **reaching a new SOTA**.
- Design ARM to **select important productspecific attributes** and to make the model dataefficient

Dataset

- We enriched popular PEM datasets.
- We added product-specific tables • Varying numbers of attributes
 - Many **distinct schemas**.

	Amazon-Google	Walmart-Amazon
	[20]	[20]
#Train samples (N./P.)	6175/699	5568/579
#Test samples (N./P.)	2059/234	1856/193
#Attrs (fixed)	3	5
	Amazon-Google-Tab	Walmart-Amazon-Tab
	(ours)	(ours)
#Tables (Amazon)	909	16264
Table coverage	66%	73%
#Unique attrs	84	695
Avg. #attrs	10.2	19.97
	0.0	01

Table 2: Statistics of the datasets.

TATEM Model

TATEM Serialization

TATEM employs a serialization technique for semi-structured, product specific data.

 $e = (title, val_{title}), (manufac, val_{manufac}), (price, val_{price}),$ $\{(attr_i, val_i)\}_{1 \le i \le k}$.

 $serialize(e) ::= val_{title} [ATTR] val_{manufac} [ATTR] val_{price} [ATTR]$ $(attr_i, val_i) \dots [ATTR] (attr_k, val_k)).$

Figure 1: A hard negative example disambiguated using an Amazon product detail table, showing that relying on the information given in titles alone is hard to vote against a match because of the large number of overlapping tokens. Our model TATEM disambiguates this by establishing a relationship between e2 and table1 (if exists). Here, the Model Number field helps TATEM to reach a Non-Match decision.

Attribute Ranking Module (ARM)

Generate the top *n* attribute-value pairs for a given product entity (e.g., from Amazon) in response to a pair of entities (e.g., Amazon-Google) for EM.

Three Benefits

- An effective solution for transformer-based PLMs on **length limitation**.
- TATEM equipped with ARM improves the overall efficiency and **effectiveness of the EM task**.
- Reducing the number of input tokens save **computational resources**, quicken the inference time, and **save financial resources**.

Figure 2: Our TATEM model coupled with ARM for PEM.

 $P(Relevence = 1 \mid attr_i, cntx) \triangleq \phi(\eta_{attr}(attr_i), \eta_{cntx}(cntx))$

Our design choice for both encoders is Sentence-BERT (SBERT), and we utilize cosine similarity as the comparison function and title as the Google product context.

Mo

DM+ DITTO KAER ROBEN SupCo GPT3(k= GPT3(k=

> R(Su

ROE TATEM + w+ w+ W

Table 3: Performance of TATEM compared to different baselines. All reported results for TATEM (ours) are statistically significant in paired t-test by taking DITTO (2020) as a reference with the confidence of 95% (*p*-value < 0.05).

ARM calculates the relevance of Amazon detail table attributes, *attr_i*, with respect to a Google product context, and it **returns the top** *n* **attributes** based on these estimates of relevance.

Experimental Results

odels	F1 Score	
	Amazon-Google [20]	Walmart-Amazon [20]
(2018)	70.7	73.6
O (2020)	75.58	86.76
(2023)	76.25	-
1 (2022)	79.06	86.68
n (2022)	79.28	-
=0) (2022)	54.3	60.6
10) (2022)	63.5	87.0
	Amazon-Google-Tab	Walmart-Amazon-Tab
	(ours) [structured]	(ours) [structured]
TT0	80.56	86.85
)BEM	78.50	85.74
pCon	78.58	-
	Amazon-Google-Tab	Walmart-Amazon-Tab
	(ours)	(ours)
TO-m	79.35	86.42
BEM-m	80.92	88.31
(ours)		
/ all tuples	82.2	90.56
$/ \operatorname{ARM}(n=1)$	80.12	88.52
/ ARM(n=3)	81.28	89.24
/ ARM (<i>n</i> =5)	81.83	89.77

• Results emphasizes the **advantages of directly serializing** semi-structured data, particularly for lengthy, complex product tables.

• TATEM, reaches **new SOTA results** (F1 score of 82.2 and 90.56 for Amazon-Google-Tab and Walmart-Amazon-Tab.