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ABSTRACT
Product Entity Matching (PEM)–a subfield of record linkage that
focuses on linking records that refer to the same product–is a chal-
lenging task for many entity matching models. For example, re-
cent transformer models report a near-perfect performance score
on many datasets while their performance is the lowest on PEM
datasets. In this paper, we study PEM under the common setting
where the information is spread over text and tables. We show that
adding tables can enrich the existing PEM datasets and those tables
can act as a bridge between the entities being matched. We also
propose TATEM, an effective solution that leverages Pre-trained
Language Models (PLMs) with a novel serialization technique to en-
code tabular product data and an attribute ranking module to make
our model more data-efficient. Our experiments on both current
benchmark datasets and our proposed datasets show significant im-
provements compared to state-of-the-art methods, including Large
Language Models (LLMs) in zero-shot and few-shot settings.
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1 INTRODUCTION
Entity Matching (EM) is the process of identifying and linking en-
tity descriptions from different sources [11]. It involves recognizing
records that refer to the same real-world entity, such as a person,
organization, or product despite differences across databases [26].
Linking entities from both structured and unstructured sources is
crucial in various domains such as e-commerce, HR hiring, adver-
tising, and market research [18]. For example, a price comparison
website may perform product matching for data from different
vendors before finding a site that sells the same product for the
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Amazon Product Title Google Product Title

"mcafee total protection
2007 3 users"

"mtp07emb3rua mcafee total
protection 2007 complete package

3 users cd mini-box"
"britannica deluxe" "britannica deluxe 2008"

"nero 7 ultra edition enhanced" "70009 nero ultra edition enhanced
v.7 complete package 1 user cd win"

Table 1: A few hard negative examples [20]. Despite their
highly similar titles, product pairs are not the same.

lowest price. Or, a new vendor may want to create a comprehensive
product catalog by collecting data from different sources and merg-
ing the entries that refer to the same product to avoid redundancy.
However, product formatting across different sites may not be con-
sistent, and multiple features of a product may be packed into a
product title or description without any separation or indication of
what those features are (see some examples in Table 1).

The problem of entity matching has been extensively studied
using various datasets [15, 16, 27] and recent techniques such as in-
jecting domain knowledge [10, 17], improving the serialization [1],
and utilizing LLMs [21]. Here we focus on Product Entity Matching
(PEM) for two important reasons: Firstly, the PEM datasets, such
as Amazon-Google [20] and Walmart-Amazon [20], continue to
pose a significant challenge, compared to many other datasets on
which the existing EM models have already achieved a near-perfect
performance [21]. Secondly, numerous real-world e-commerce ap-
plications can benefit from more effective PEM solutions. We have
identified three major shortcomings of these popular PEM bench-
marks. Firstly, some product titles are highly similar but are la-
beled as non-matching pairs (referred to as hard negative examples).
Even for a human annotator, it is difficult to distinguish those non-
matching examples based on the information given in the dataset.
As a result, State-Of-The-Art (SOTA) models struggle to disam-
biguate them. Table 1 shows three hard negative examples from the
Amazon-Google dataset [20]. Secondly, certain parts of a title are
more useful for reaching a matching decision (e.g., model, year in-
troduced, functionalities, etc.), but those pieces of information may
be located in different places for different products, and the model
may not have direct access to the encoded attributes. For instance,
in the first example in Table 1, the manufacturer “mcafee” is written
at the beginning of the Amazon product title and in the middle of
the Google one. An EM model should recognize if it is an important
piece of information and the attribute it describes. Thirdly, in all
these datasets, a fixed number of attributes are given for all samples
(e.g., title, manufacturer, and price for Amazon-Google dataset [20]).
Different products can have different sets of attributes and limiting
the attributes to a fixed set is likely to miss key product features.
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We enrich PEM benchmarks from [20] to offer a product de-
tail table as a source of additional knowledge for every Amazon
product, serving as a bridge to connect two entities of interest
and potentially improving the accuracy of matching decisions. The
datasets include a varying number of attributes for each product,
and the introduction of the detail table allows all characteristic
features to be captured. The supplementary data is anticipated to
reveal distinguishing features that may not be present in the prod-
uct title, which can help the model to disambiguate hard negative
examples. Consider the example shown in Figure 1, where a model
number is given for the Google product but this model number is
not mentioned in the title of the Amazon product. The presence
of the model number in the detail table provides this missing link
between the two product descriptions.

We also present TAble & Text for EntityMatching (TATEM),
an entity matching approach based on PLMs. TATEM reaches new
SOTA results for PEM benchmarks by incorporating the comple-
mentary tabular data. We further introduce an Attribute Ranking
Module (ARM) to rank the attributes of one entity based on their
relevance to other entity of interest. Our evaluation shows that
ARM is capable of finding the most effective attributes for EM. Our
contributions are summarized as follows: (1) We enrich popular
and challenging PEM benchmarks [20] with complementary prod-
uct tables. (2) We propose a new serialization technique to encode
semi-structured tables in our PEM datasets for PLM-based mod-
els. (3)We develop TATEM, a model which employs both tabular
and textual information for EM, reaching a new SOTA for chal-
lenging PEM benchmarks. (4)We design ARM to select important
product-specific attributes and to make the model data-efficient.

2 RELATEDWORK
Before the advent of Deep Learning (DL), early EM models were
using rule-based models [9, 29] or traditional ML to learn matching
functions [3]. In the era of DL, many EM models used RNN archi-
tectures and attention mechanisms: MPM [12], DeepMatcher [20],
Hi-EM [33], Seq2SeqMatcher [22], and DeepER [8] models. Recent
high-performance models benefit from a fine-tuned PLM to tackle
the problem. DITTO [17], a prominent EM model, concatenates a
pair of records to form a sequence, and fine-tunes a PLM to solve
a sequence-pair classification problem. Brunner and Stockinger
[5] introduce a similar transformer-based solution. ROBEM [1],
inspired by DITTO, achieves promising results with an improved
serialization technique, a loss function designed for the imbalanced
dataset, and a higher degree of non-linearity in the classification
head. Peeters and Bizer [24] deploy Joint BERT [6] for EM. SupCon
[25] extends this approach using supervised contrastive learning
[14], achieving SOTA results for Amazon-Google dataset. More
recently, Narayan et al. [21] utilize LLMs such as GPT3 [4] to push
the SOTA results for EM benchmarks.

There are some studies on using additional resources to improve
the performance. KAER [10] resorts to Wikidata as a knowledge
graph to inject external knowledge at both schema and entity lev-
els. However, this method is less likeley to be effective for hard
negative examples, as they typically belong to the same category at
the schema level, and new and less popular products are less likely
to be found in the knowledge graph. DITTO [17] highlights the

e1: Amazon Entity

Title nero 7 ultra edition
enhanced

Manufacturer nero inc.

Price 99.99

e2: Google Entity

Title
70009 nero ultra edition
enhanced v.7 complete
package 1 user cd win

Manufacturer NULL

Price 87.76

table1: Amazon Detail Table

Model number 70115

Language English

Package dimensions 7.4 x 5.3 x 1.3
inches; 5.6 ounces

Date first available July 19, 2006

Non-Match

.

.
.
..

.
.
.

Figure 1: A hard negative example disambiguated using an
Amazon product detail table, showing that relying on the
information given in titles alone is hard to vote against a
match because of the large number of overlapping tokens.
Our model TATEM disambiguates this by establishing a re-
lationship between 𝑒2 and 𝑡𝑎𝑏𝑙𝑒1 (if exists). Here, the Model
Number field helps TATEM to reach a Non-Match decision.

importance of extra domain knowledge for EM by adding Named
Entity Recognition (NER) tags from spaCy [30] and rewriting text
spans with developer-specified rules (e.g., replacing 5 % and 5.00
% with 5.0%). However, the rewriting rules do not add any extra
domain knowledge. Although DITTO [17] uses its domain knowl-
edge to identify the important pieces of information in the title, it
cannot identify the specific attribute a text span describes, and the
model has no direct access to the text span as a separate attribute.
KAER [10] argues that external knowledge can help with the het-
erogenity of data sources, but the reported results are only on the
EM benchmarks that share the same schema. These recent studies
have not focused on or addressed the aforementioned issues due to
the lack of a relevant dataset. Therefore, in this paper, we introduce
Amazon-Google-Tab and Walmart-Amazon-Tab datasets (§3) and a
model called TATEM (§4) to fill these gaps.

3 DATASET
Many structured EM datasets have a fixed schema for their records,
with a predetermined number of attributes for each sample. For in-
stance, the original Amazon-Google dataset introduced by Köpcke
et al. [16] had four attributes: title, manufacturer, price, and de-
scription. Based on the original Amazon-Google [16] and Walmart-
Amazon datasets [13],Mudgal et al. [20] released structuredAmazon-
Google and Walmart-Amazon datasets with only three and five
attributes, respectively. Currently, high-performance EM models
utilize the later version of the datasets. Our proposed enriched
Amazon-Google-Tab and Walmart-Amazon-Tab datasets are based
on the original datasets. To improve the effectiveness of EM models
in disambiguating hard negative examples (see Figure 1) and to pro-
vide them with new challenges, we have added product-specific ta-
bles with varying numbers of attributes and many distinct schemas.
Those tables are obtained by retrieving Amazon product pages
using ASIN [2] and extracting the relevant tabular data.

Our enriched Amazon-Google-Tab and Walmart-Amazon-Tab
datasets capture all the key features of Amazon products, such as
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Amazon-Google
[20]

Walmart-Amazon
[20]

#Train samples (N./P.) 6175/699 5568/579
#Test samples (N./P.) 2059/234 1856/193

#Attrs (fixed) 3 5
Amazon-Google-Tab

(ours)
Walmart-Amazon-Tab

(ours)
#Tables (Amazon) 909 16264
Table coverage 66% 73%
#Unique attrs 84 695
Avg. #attrs 10.2 19.97
Max #attrs 28 81

Table 2: Statistics of the datasets.

model number, language, compatible OS, genre, and more. However,
detail tables are product specific, and the schema and attributes
vary between products. Table 2 provides some statistics of the
structured Amazon-Google [20], structured Walmart-Amazon [20],
our enriched datasets. The Amazon-Google-Tab dataset provides
product detail tables for 909 Amazon products through 84 unique
attributes. Interestingly, our Walmart-Amazon-Tab dataset includes
more intricate product tables for a total of 16,264 Amazon items
using 695 different unique attributes. Consequently, the EM task
becomes challenging in (1) serialization of tables using PLMs (§4.1)
and (2) data-efficient solutions for long tables (§4.2).

4 TATEM MODEL
4.1 TATEM Serialization
TATEMemploys a serialization technique for semi-structured, product-
specific data. In contrast, DITTO [17] and ROBEM [1] use serializa-
tion techniques for structured datasets that have a fixed number of
attributes. Although ROBEM and DITTO serialization techniques
have the potential to be applied to semi-structured data, they are
not as effective as TATEM serialization as it is shown in Table 3.
Here TATEM serialization is explained for Amazon-Google-Tab al-
though the same procedure is applied to Walmart-Amazon-Tab. For
every example, there exist three fixed attributes: title, manufacturer,
and price; and 𝑘 additional attributes from the product detail table,
with 𝑘 varied for each product:
𝑒 = (𝑡𝑖𝑡𝑙𝑒, 𝑣𝑎𝑙𝑡𝑖𝑡𝑙𝑒 ), (𝑚𝑎𝑛𝑢𝑓 𝑎𝑐, 𝑣𝑎𝑙𝑚𝑎𝑛𝑢𝑓 𝑎𝑐 ), (𝑝𝑟𝑖𝑐𝑒, 𝑣𝑎𝑙𝑝𝑟𝑖𝑐𝑒 ),
{(𝑎𝑡𝑡𝑟𝑖 , 𝑣𝑎𝑙𝑖 )}1≤𝑖≤𝑘 .

To serialize an entity 𝑒 , for the first three attributes, only the
attribute value is considered because they always appear in the
same position, but for the other 𝑘 attributes, the attribute name is
concatenated with the attribute value because the attributes are
different for every product. Similar to ROBEM, a special token ap-
pears between the attributes:
𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑒) ::= 𝑣𝑎𝑙𝑡𝑖𝑡𝑙𝑒 [ATTR] 𝑣𝑎𝑙𝑚𝑎𝑛𝑢𝑓 𝑎𝑐 [ATTR] 𝑣𝑎𝑙𝑝𝑟𝑖𝑐𝑒 [ATTR]
(𝑎𝑡𝑡𝑟𝑖 , 𝑣𝑎𝑙𝑖 ) . . . [ATTR] (𝑎𝑡𝑡𝑟𝑘 , 𝑣𝑎𝑙𝑘 )).

For example, the Amazon entity given in Figure 1 is serialized
as: nero 7 ultra edition enhanced [ATTR] nero inc. [ATTR] 99.99
[ATTR] model number 70115 [ATTR] . . . [ATTR] date first available
July 19, 2006.

ARM

Ranked table1
- 
- 
...

table1: Product
Detail Table

- 
- 
- 
...

e1: Amazon Entity
 - Title
 - Manufacturer
 - Price

Phase 1: Apply ARM to rank table attributes Phase 2: Apply TATEM using the ranked table

TATEM

e2: Google Entity
 - Title
 - Manufacturer
 - Price

   Match (1) 
 OR

   Non-Match (0)

Figure 2: Our TATEMmodel coupled with ARM for PEM.

4.2 Attribute Ranking Module (ARM)
In both of our datasets, each product entity is associated with a large
number of attributes, making it challenging to determine which
attributes are the most indicative of a true match or non-match.
The goal of ARM is to generate the top 𝑛 attribute-value pairs for a
given product entity (e.g., from Amazon) in response to a pair of
entities (e.g., Amazon-Google) for EM. This is important for two
main reasons. Firstly, transformer-based PLMs [7, 19] have a limi-
tation on the maximum length of input sequences they can handle
[31]. The most common solution to this problem is to trim the in-
put sequences to a certain length (e.g., 512). However, trimming a
long input sequence is tricky for EM in general because important
information for matching decisions may be located towards the
bottom of the tables. Secondly, employing TATEM equipped with
ARM can improve the overall efficiency and effectiveness of the
EM task. For instance, reducing the number of input tokens can
save computational resources, quicken the inference time, and save
financial resources in particular when using pay-as-you-go services
such as GPT PLMs [23].

Here ARM is described for Amazon-Google-Tab although the
same procedure is applied to Walmart-Amazon-Tab dataset to se-
lect the most influential attributes. Walmart*-Amazon-Tab Inspired
by unsupervised text ranking [32], ARM calculates the relevance
of Amazon detail table attributes, 𝑎𝑡𝑡𝑟𝑖 , with respect to a Google
product context, and it returns the top 𝑛 attributes based on these
estimates of relevance.

𝑃 (𝑅𝑒𝑙𝑒𝑣𝑒𝑛𝑐𝑒 = 1 | 𝑎𝑡𝑡𝑟𝑖 , 𝑐𝑛𝑡𝑥) ≜ 𝜙 ([𝑎𝑡𝑡𝑟 (𝑎𝑡𝑡𝑟𝑖 ), [𝑐𝑛𝑡𝑥 (𝑐𝑛𝑡𝑥))
where 𝜙 is a comparison function and [𝑐𝑛𝑡𝑥 and [𝑎𝑡𝑡𝑟 give en-
codings of a context from one source and a table attribute from
another source, respectively. Our design choice for both encoders is
Sentence-BERT (SBERT) [28], and we utilize cosine similarity as the
comparison function and title as the Google product context. Impor-
tant Amazon attributes for EM should contain information about
features that are mentioned in a Google record, but not in an Ama-
zon record. Consequently, an effective ARM should make matching
records closer and non-matching records farther by adding just a
few high-ranking attributes without a big drop in performance.

Figure 2 illustrates the operations of TATEM on an Amazon
entity (t1) with 3 attributes (title, manufacturer, price) and a
product detail table, compared to a Google product (t2). In phase 1,
ARM outputs a ranked list of attribute-value pairs. Interestingly, the
ranked table attributes are different for each pair of records. In phase
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2, TATEM is applied to the Amazon-Google pair enriched with the
ranked Amazon attributes and it outputs a matching decision (0, 1).

5 EXPERIMENTAL EVALUATION
We utilized RoBERTabase [19] as our PLM because it has been found
effective for the EM tasks [17, 18]. For training the models, we
followed the parameter configuration of DITTO [17].

5.1 Results
Here, we aim to evaluate the importance of auxiliary tabular data
about product key features, the effectiveness of TATEM serialization
methodology, and the effect of ARM on the model’s data efficiency.
As a base for comparison, Table 3 shows the performance, in terms
of F1-score, of DeepMatcher+ (DM+), DITTO, ROBEM, KAER, Sup-
Con, and GPT3 on structured PEM datasets [20]. To demonstrate
how competitive models (DITTO, ROBEM, and SupCon) perform if
they have access to our enriched datasets, we design two sets of ex-
periments: (1)We convert our semi-structured Amazon-Google-Tab
and Walmart-Amazon-Tab datasets into a structured format with a
column allocated to each unique attribute. The results are denoted
as Amazon-Google-Tab and Walmart-Amazon-Tab (ours) [struc-
tured] in Table 3. (2)We modify the implementation of DITTO and
ROBEM to be compatible with our semi-structured data using their
respective serializations described in Section 4.1. For the modified
models, denoted as DITTO-m and ROBEM-m, we take the attribute
name and attribute value directly from our Amazon-Google-Tab
and Walmart-Amazon-Tab datasets to serialize each entry.

As reported in Table 3, once DITTO has access to the structured
format of Amazon-Goole-Tab dataset, it outperforms the current
SOTA model (SupCon) and presents a better performance than
ROBEM, underscoring the importance of having additional product
knowledge for EM. On the contrary, whenDITTO-m and ROBEM-m
are utilized for Amazon-Goole-Tab dataset, ROBEM-m outperforms
DITTO-m. This disparity in performance is rooted in the serializa-
tion techniques employed by each model, highlighting the need
for a serialization technique that is tailored to the structure of data.
Adding complementary information to Walmart-Amazon in a struc-
tured format doesn’t help and even leads to a decrease in F1 score.
This unintentional behavior is rooted in the difference between
our two enriched datasets. In fact, Walmart-Amazon-Tab includes
far more unique features (695 compared to 84 unique features) as
noted in Table 2, and this leads to wider, more sparse tables in a
structured format, which confuses the PLM-based EM. In contrast,
employing Walmart-Amazon-Tab in a semi-structured format for
DITTO-m and ROBEM-m outperforms the last SOTA results. It
emphasizes the advantages of directly serializing semi-structured
data, particularly for lengthy, complex product tables.

Our proposed model, TATEM, reaches new SOTA results (F1
score of 82.2 and 90.56 for Amazon-Google-Tab andWalmart-Amazon-
Tab, respectively) as it benefits from a serialization technique that is
specially designed for the product-specific tabular structure of our
enriched datasets. Based on our findings, the best serialization for
the three fixed attributes (i.e., title, manufacturer, price) is to exclude
the attribute names. On the other hand, for 𝑘 varying attributes
from the product detail table, including both the attribute name
and value is the best strategy as it provides the EM model with

Models F1 Score
Amazon-Google [20] Walmart-Amazon [20]

DM+ (2018) 70.7 73.6
DITTO (2020) 75.58 86.76
KAER (2023) 76.25 -
ROBEM (2022) 79.06 86.68
SupCon (2022) 79.28 -

GPT3(k=0) (2022) 54.3 60.6
GPT3(k=10) (2022) 63.5 87.0

Amazon-Google-Tab
(ours) [structured]

Walmart-Amazon-Tab
(ours) [structured]

DITTO 80.56 86.85
ROBEM 78.50 85.74
SupCon 78.58 -

Amazon-Google-Tab
(ours)

Walmart-Amazon-Tab
(ours)

DITTO-m 79.35 86.42
ROBEM-m 80.92 88.31

TATEM (ours)
+ w/ all tuples 82.2 90.56
+ w/ ARM (𝑛=1) 80.12 88.52
+ w/ ARM (𝑛=3) 81.28 89.24
+ w/ ARM (𝑛=5) 81.83 89.77

Table 3: Performance of TATEM compared to different base-
lines. All reported results for TATEM (ours) are statistically
significant in paired t-test by taking DITTO (2020) as a refer-
ence with the confidence of 95% (𝑝-value < 0.05).

information about the attribute type. The KAER model [10], despite
having access to additional entity information from WikiData, fails
to outperform ROBEM and reaches an F1 score of 76.25 on Amazon-
Google dataset [20], demonstrating that accessing extra information
does not essentially guarantee an increase in performance.

In our datasets, a typical entity can have up to 81 attributes.
However, ARM can significantly reduce the number of tokens fed
to a PLM. An effective ARM should identify the most important
attributes for EM to make matching pairs closer and non-matching
pairs further apart with just a few attributes. To evaluate the effects,
ARM is applied to our datasets, and from the ranked list, only the top
𝑛 attributes are selected. Just adding the top one attribute can beat
the current SOTA results (see Table 3), and the top five attributes
are responsible for most of the performance gain.

6 CONCLUSION AND FUTUREWORK
We have introduced two new datasets and solution that uses PLMs
with a novel serialization technique to encode semi-structured
tables. The experiments conducted on both existing benchmark
datasets and the proposed datasets show significant improvements.
Additionally, we have designed an unsupervised attribute rank-
ing module that enhances the model’s data-efficiency and cost-
effectiveness. For future work, we will study the robustness of our
model against distribution shift and input perturbation.
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