A Flexible Routing Metric for Delay Sensitive Urban Vehicular Networks

Group members :

Mir Tafseer Nayeem (074413) Md. Rokon Uz Zaman Sumon (074420) Md. Mamunur Rashid Akand (074430)

Supervised by :

Dr. Muhmmad Mahbub Alam Asst. Professor, CIT Department, IUT.

Final Year Thesis Presentation

Sept 20, 2011

Introduction

- VANETs has become an important research area on providing safety and comfort of passengers in both highway and city scenarios.
- The environments for the vehicular networks
 - Every vehicle has a DSRC (Dedicated Short Range Communication) device with double interfaces for wireless communication.
 - Every vehicle has GPS-based navigation system, digital road maps and optional sensors for driving information.
 - In recent years, the radio range of VANETs is extend to almost 1,000 meters and can support data rate of 6 to 27 Mbps.

- The objective in this paper
 - Vehicles can deliver their packets through the multi-hop forwarding with the help of other vehicles for time critical applications.

Literature Review

- Greedy perimeter stateless routing (GPSR) [MobiCom 2000], which always chooses the next hop closer to the destination, is unsuitable for sparsely connected VANETs.
- VADD [IEEE INFOCOM' 08] showed that shortest time path is often different from shortest distance path because of varying traffic densities.
- TBD [IEEE ICDCS' 10] comes to the conclusion that when the interarrival time of the vehicles decreases then the forwarding delay will eventually decrease.
- In [ACM VANET'10] authors solved network partition by propagating the message to other perpendicular streets instead of along the street.

Problem Statement

4

Problem Definition

Surely, $\mu_B > \mu_A$ as $l_{11,12} + l_{12,22} = l_{11,21} + l_{21,22}$

- Since path B has the temporary network fragmentation after vehicle n, the message cannot be forwarded via multi-hop communication.
- As, $d_{path A} < d_{path B}$, Path A seems to be better path to send data from S to D.

Using Bi-directional Traffic

6

So, the Total Forwarding Length: $l_f = l_c + l_d$ $l_c =$ Length of the connected road segment $l_d =$ Length of the disconnected road segment $l_f =$ Total forwarding length of the road segment

Challenges and Contribution

Challenges

- Data forwarding for delay sensitive applications in urban areas.
- Reducing frequent network partitions utilizing bidirectional traffic.

Contribution

- A more accurate link delay model compare to both VADD and TBD without using roadside units (e.g., APs).
- Delay estimation considering the behavior of bi-directional traffic.
- End-to-End delay model based on city blocks.
- Reusing existing path for subsequent data forwarding.

EFD: Link Delay Model

- A. Expected forwarding Delay in a cluster $E[D_c]$
- □ Expected forwarding delay in a cluster $E[D_c]$ is derived in 4 steps as follows.

Step 1: Determining expected number of vehicle in a cluster

A group of vehicles form a cluster if inter-vehicle distance between any two vehicles in that group does not exceed the transmission range shown below.

We can determine the probability that V number of vehicles are inside a cluster using geometric distribution as follows.

$$P_V(v) = (1 - P(X \le R)) \cdot P(X \le R)^{v-1}, v \ge 1$$

Here,

V = Number of vehicles in a cluster

- X = Inter-vehicle distance in a cluster
- R = Transmission range of a vehicle
- □ Inter-vehicle distance X is truncated at right by R. According to (JMS4'08), $P(X \le R)$ can be obtained as follows:

$$P(X \le R) = \frac{\mu e^{-\mu r}}{1 - e^{-\mu r}}$$
, $\mu = \lambda v$

10

So, expected number of vehicle in a cluster is-

$$E[V] = \frac{1}{P(X \le R)} = -\frac{1 - e^{-\lambda r}}{\lambda e^{-\lambda r}}$$

 \square Step 2: Determining expected length of the cluster E[L]

We can use Wald's equation to determine E[L]

$$E[L] = E\left[\sum_{i=1}^{V-1} X_i\right] = E[V-1] \times E[X]$$

 $\Box E[X]$ can be obtained as follows: (JMS4'08)

$$E[X] = \frac{1}{\lambda} - R \cdot \left(e^{\lambda r} - 1\right)^{-1}$$

Here, λ = arrival rate of vehicles

Step 3: Expected Hop count in road segment(E[H])

- We have to compute E[H] for each cluster in a road segment, then we will take the sum.
- We assume-

Minimum number of hop count in a cluster : $H_{min} = \frac{E[L]}{R}$

Maximum number of hop count in a cluster: $H_{max} = \frac{E[L]}{E[X]}$

- \Box H is uniformly distributed between H_{min} and H_{max}
- Expected hop count, $E[H] = \frac{H_{max} + H_{min}}{2}$

Step 4: Determining expected forwarding delay in a cluster $E[D_c]$

- Now we have computed expected hop count E[H] and we know per hop delay D_h .
- From this information, we can determine expected forwarding delay $E[D_c]$ in a cluster as follows-

$$E[D_c] = E[H] \times D_h$$

- B. Delay due to Carry and forward Case 1:
- $P_{1} = \Pr\{X_{d,f} \leq R\} \Pr\{X_{f,g} \leq R\}$ $Y_{1} = 0$ $f_{Y_{1}}(y) = \begin{cases} 1, & y = 0\\ 0, otherwise \end{cases}$

Fig. Case 1

Case 2:

- $P_{2} = \Pr\{X_{d,f} > R\} \Pr\{X_{f,g} \le R\}$ $a = R X_{f,g}$ $Y_{2} = a$
- $f_{Y_2}(x) = \frac{\lambda e^{-\lambda x}}{1 e^{\lambda (R+2a)}}$ or x < R + 2a

□ Fig. Case 2

12

Case 3:

$$P_3 = \Pr\{X_{d,f} \le R\} \Pr\{X_{f,g} > R\}$$

In this case, cluster d will store the data in the buffer- so that it can carry and forward when cluster f fails to forward it to cluster g.

- □ Based on above 3 cases, the density function of the disconnection distance is $f_Y(y) = \sum_{i=1}^3 P_i \times f_{Y_i}(y)$
- □ Now, we have estimated both connection delay(D_c) and disconnection delay(D_d).
- One road segment delay : $E[D] = E[D|l_r > R] \times \Pr\{l_r > R\}$ Here, $D = D_c + D_d$ $l_r = \text{remaining road length}$

EFD: E2E Delay Model

Objective

- To compute the expected end-to-end delay from a moving source (S) vehicle to destination (D) using dynamic programming.
- Road network topology graph (RNTG) for Data Forwarding.

Setting the forwarding area like [MURU'06].

Given Setting the Restricted Forwarding Area:

 $\begin{aligned} & ForwardingArea. X_{left} = \left[min(S.X, D.X)\right] - M \\ & ForwardingArea. X_{right} = \left[max(S.X, D.X)\right] + M \\ & ForwardingArea. Y_{bottom} = \left[min(S.Y, D.Y)\right] - M \\ & ForwardingArea. Y_{top} = \left[max(S.Y, D.Y)\right] + M \end{aligned}$

Where, M is the system parameter that can be tuned dynamically based on the traffic statistics. It is usually equal to the length of street segment.

- Suppose, that a packet carrier at intersection $I_{x_i y_i}$ expected to deliver towards intersection $I_{x_j y_j}$. At first we introduce the following notations:
- $\Box \quad d_{x_i y_i, x_j y_j} \text{: The expected forwarding delay for an edge } e_{x_i y_i, x_j y_j} \text{.}$ $e_{x_i y_i, x_j y_j} \quad I_{x_j y_j} \quad I_{x_j y_j}$

 \square $P(x_j y_j)$: Forwarding Probability for edge $e_{x_i y_i, x_j y_j}$.

 $\square D_{I_{x_i y_i}}(I_{x_n y_n}): \text{Cost of least-delay path from current intersection } I_{x_i y_i} \text{ to } I_{x_n y_n} \text{ , where } I_{x_n y_n} \text{ is the final intersection before the destination.}$

• We formulate
$$D_{I_{x_i y_i}}(I_{x_n y_n})$$
 recursively as follows:
 $D_{I_{x_i y_i}}(I_{x_n y_n}) = \min \left\{ d_{x_i y_i, x_j y_j}^{(c)} P(x_j y_j) + D_{I_{x_j y_j}}(I_{x_n y_n}) \right\}$

A. Next intersection selection based on city blocks

- Block is the smallest element in the Road network topology graph (RNTG).
- City blocks can be extended in 2 ways based on the traffic statistics:

Where (2, 2) is the intermediate intersection, there are two alternate paths path A and path B from (1, 1) to reach (2, 2) via one intersection.

$$d_{x_{i}y_{i},x_{j}y_{j}}^{(c)} = d_{11,22}^{(1)} = \min\left(d_{11,12} + d_{12,22}, d_{11,21} + d_{21,22}\right)$$

• Forwarding Probability at intersection point (2, 2) is : $P(x_j y_j) = P(2,2) = P(A \cap B) = P(B|A)P(A)$ = P(B)P(A) $= P^2 * P^2 = P^4$

Horizontal Block Extension(b=2 and C=1)

One block is extended in the horizontal, where (3, 2) is the intermediate intersection, there are three alternate paths path A, path B and path C from (1, 1) to reach (3, 2) via two intersection points.

Forwarding Probability at intersection point (2, 2) is :

$$P(3,2) = P(A \cap B \cap C) = P(C|(A \cap B))P(B|A)P(A)$$

= $P^2 * P^2 * P^3 = P^7$

Horizontal Blocks can be extended up to n depending on the traffic statistics.

Vertical Block Extension(b=2 and C=2)

- One block is extended in the vertical. So, $d_{11,23}^{(2)}$ P(2,3) calculation is same as horizontal block.
- When no suitable block is found then $(1,1) \rightarrow (2,1)$ or $(1,1) \rightarrow (1,2)$ is used as the forwarding segment. ^{1,}

 So, the complete block based data forwarding in the complete path from source to destination is shown in figure.

Flexible Path Reconstruction

- Although the topology changes dramatically in VANET but still a path can be alive during certain duration of time due to roadmap geometry.
- This has encouraged us to reuse the previous path without further rebroadcasting to reduce the broadcasting load in the network.
- Link duration time means the maximum time of connectivity between two neighboring vehicles as defined in [].

$$LDT[i,j] = -(ab + cd) + \frac{\sqrt{(a^2 + c^2)r^2 - (ad - bc)^2}}{a^2 + c^2}$$

Where, $a = v_i cos \theta_i - v_j cos \theta_j$
 $b = x_i - x_j$
 $c = v_i sin \theta_i - v_j sin \theta_j$
 $d = y_i - y_j$

Т

ѫ

²¹ Flexible Path Reconstruction (continued)

So, Link Duration Time (LDT) for the sub-path is

$$LDT\left[I_{x_i y_i}, I_{x_j y_j}\right] = \min(LDT[i, j], LDT[j, k], \dots, LDT[(n-1), n])$$

 Now the total path duration time (PDT) is the minimum duration time of sub-can be calculated as

VANET Simulation: A gap between transportation and networking

- We use a tool MOVE (MObility model generator for VEhicular networks) [] to generate realistic mobility models for VANET simulations.
- MOVE is built on top of an open source microtraffic simulator SUMO (S. S. of Urban Mobility, 2009).
- The output of MOVE is a mobility trace file that contains information of realistic vehicle movements which can be used by ns-2.

Performance Evaluation

Evaluation Setting

- Performance Metric: Expected Forwarding Delay(EFD)
- Parameters: (i) Vehicle arrival rate, (ii) Vehicle speed, and (iii) Vehicle density
- Simulation Environments
 - Simulation area(1000 meter X 1000 meter)
 - Number of intersections: 20
 - Number of vehicles: 20-200
 - Communication range: 250 meters
 - **D** Vehicle speed distribution (V_{max}, V_{min}) : (30,5) MPH
 - Time-To-Live (TTL): 40 sec

Average Forwarding Delay and forwarding ratio comparison between EFD and TBD

✓ EFD reaches 90% CDF with a forwarding delay of about 1100ms while the value of TBD is 1900ms.

 \checkmark EFD outperforms TBD under the light traffic, such 40 \sim 100 vehicles.

 \checkmark As the traffic density increases, two schemes are converged.